Ultrasound-Guided Injection Technique for Trochanteric Bursitis Pain
CLINICAL PERSPECTIVES
Trochanteric bursitis is a common cause of lateral hip pain. The trochanteric bursa lies between the insertional tendon of gluteus maximus and the iliotibial band and the greater trochanter of the femur (Fig. 124.1). The bursa serves to cushion and facilitate sliding of the musculotendinous unit of the gluteus maximus muscle and iliotibial band over the bony greater trochanter (Fig. 124.2). The bursa is subject to inflammation from a variety of causes with acute trauma to the hip and repetitive microtrauma being the most common. Acute injuries to the bursa can occur from direct blunt trauma to the lateral hip as well as from overuse injuries including running on uneven or soft surfaces. If the inflammation of the bursa is not treated and the condition becomes chronic, calcification of the bursa with further functional disability may occur. Gout and other crystal arthropathies may also precipitate acute trochanteric bursitis as may bacterial, tubercular, or fungal infections.
The patient suffering from trochanteric bursitis most frequently presents with the complaint of lateral hip pain that can radiate down the leg with a significant increase in pain on any pressure on the area overlying the greater trochanter of the femur and the inflamed trochanteric bursa. The patient may find walking upstairs increasingly difficult. Physical examination of the patient suffering from trochanteric bursitis will reveal point tenderness over the greater trochanter. The pain may radiate into the lateral lower extremity. If there is significant inflammation, rubor and color may be present and the entire area may feel boggy or edematous to palpation. Swelling, which at times can be quite dramatic, is often present. Passive adduction and abduction, as well as active resisted abduction of the affected lower extremity, will reproduce the pain. Sudden release of resistance to abduction during the resisted abduction release test for trochanteric bursitis markedly increases the pain (Fig. 124.3). There should be no sensory deficit in the distribution of the lateral femoral cutaneous nerve, as is seen with meralgia paresthetica, which often is confused with trochanteric bursitis. If calcification or gouty tophi of the bursa and surrounding tendons are present, the examiner may appreciate crepitus with active abduction of the hip. Often, the patient will not be able to sleep on the affected side.
Plain radiographs are indicated in all patients who present with hip pain to rule out occult bony pathology as well as to identify the characteristic irregular surface of the greater trochanter that is commonly seen in patients with trochanteric bursitis (Fig. 124.4). Based on the patient’s clinical presentation, additional testing may be indicated, including complete blood cell count, sedimentation rate, and antinuclear antibody testing. Magnetic resonance imaging or ultrasound imaging of the affected area may also confirm the diagnosis and help delineate the presence of other hip bursitis, calcific tendonitis, tendinopathy, triceps tendonitis, or other hip pathology (Figs. 124.5 and 124.6). Magnetic resonance imaging or ultrasound imaging of the affected area may also help delineate the presence of calcific tendonitis or other hip pathology. Rarely, the inflamed bursa may become infected, and failure to diagnose and treat the acute infection can lead to dire consequences. Electromyography helps distinguish trochanteric bursitis from meralgia paresthetica and sciatica.
FIGURE 124.3. The resisted abduction release test is performed by having the patient vigorously abduct their affected hip against resistance, which will produce some pain (A). The examiner suddenly releases the resistance causing a marked exacerbation of pain in patients suffering from trochanteric bursitis (B).
Full access? Get Clinical TreeGet Clinical Tree app for offline access |