Severe Upper Airway Infections



Severe Upper Airway Infections


Stephen J. Krinzman

Sunil Rajan

Richard S. Irwin



The components of the upper airway include the nose, mouth, nasopharynx, oropharynx, and hypopharynx. It communicates with the paranasal sinuses and tympanic cavity. Although minor infections in these areas are commonly observed in the outpatient setting, occasionally, they may become severe and life threatening. This class of disease requires intense observation and aggressive management and is the focus of this chapter.


Sinusitis

In patients on mechanical ventilatory support, sinusitis is one of four common causes of fever, along with pneumonia, catheter-related infection, and urinary tract infection [1,2,3,4]. Sinusitis is encountered in the intensive care unit (ICU) in two situations: as an uncommon, potentially fatal complication of a community-acquired sinus infection such as meningitis, osteomyelitis, orbital infection, or brain abscess and as a hospital-acquired sinus infection that may be a frequent cause of occult fever in a critically ill patient.


Incidence

The frequency of nosocomial sinusitis varies greatly from less than 5% to 100% [5,6], depending on the patient population studied and the diagnostic criteria used. In one series, 95% of nasotracheally intubated patients developed radiographic evidence of pansinusitis [7], as did 25% of patients who were orotracheally intubated. Only 40% of patients with “radiographic
sinusitis” were found to have positive cultures, although some cultures may have been sterilized by prior use of broad-spectrum antibiotics. Using stringent diagnostic criteria based on antroscopy, histopathology, and microbiology, the rate of infectious sinusitis may be closer to 10% in patients on long-term mechanical ventilation [4,5].


Pathogenesis

Critically ill patients are predisposed to develop nosocomial sinusitis for several reasons. The diameter of the ostia, normally as small as 1 or 2 mm, has been shown to decrease with recumbency as much as 23% because of venous hydrostatic pressures [8]. In addition, the maxillary sinus ostia are poorly located for gravitational drainage [8]. Nasotracheal and nasogastric tubes strongly predispose patients to develop sinusitis. Patients with orotracheal tubes have a lower incidence of bacterial sinusitis than those with nasotracheal tubes [4,9]. In one series, 73% of mechanically ventilated patients developed culture-proven sinusitis within 7 days of placement of nasogastric or nasotracheal tubes [7]. Larger intranasal tubes (tracheal) will induce radiographic sinus changes more quickly than smaller tubes (gastric) [4]. Using multiple logistic regression analysis, risk factors for nosocomial sinusitis, of strongest association, are sedative use, nasogastric feeding tubes, Glasgow coma scale less than 8, and nasal colonization with enteric Gram-negative bacteria [10].


Etiology

The microbiology of nosocomial sinusitis is quite distinct from that of community-acquired sinusitis. Haemophilus influenzae and Streptococcus pneumoniae are rarely isolated in the nosocomial setting. Nosocomial sinusitis is polymicrobial in 44% to 58% of cases [11,12], with Gram-negative organisms being the causative agents in two thirds of cases, and Gram-positive organisms being implicated in one third [13]. Anaerobes are isolated in 0% to 15% of cases [11,14]. Staphylococcus aureus is the most common Gram-positive organism identified, and Pseudomonas species are the leading Gram-negative pathogens [4,13,15]. The organisms isolated in nosocomial sinusitis are the ones frequently identical to those cultured from the lower respiratory tract [3,14]. Such findings support the concept of general colonization of the airways in critically ill patients.

Specific situations warrant consideration of infection with more unusual pathogens. Rhinocerebral mucormycosis, an invasive infection usually caused by the branching fungus Rhizopus, a Zygomycetes, is seen most often in association with diabetes mellitus with ketoacidosis, burns, chronic renal disease, cirrhosis, and immunosuppression [16,17]. Other fungal infections, primarily with Aspergillus species, can be seen in normal hosts but are usually invasive diseases of immunocompromised patients [18]. Cryptococcus neoformans can cause sinusitis with a high relapse rate and significant mortality in immunocompetent and immunocompromised patients [19]. Candida species [20], Pseudoallescheria boydii and Cytomegalovirus species, and other unusual organisms have been isolated in patients with acquired immunodeficiency syndrome with sinusitis [21].


Complications

Complications of acute sinusitis are rare but can be rapidly fatal and are best managed in an ICU. Orbital complications include edema, predominantly of the eyelids, orbital cellulitis, orbital abscess, subperiosteal abscess, and cavernous sinus thrombosis [22,23]. The last one is the most severe, with a mortality of greater than 20% [24,25,26]. Intracranial complications have an overall mortality of 40% and include osteomyelitis, meningitis, epidural abscess, subdural empyema, and brain abscess [24,25,26]. In these cases, sinus drainage is imperative and antibiotics directed by culture result. Several investigators have examined the relationship between nosocomial sinusitis and ventilator-associated pneumonia. When S. aureus and Pseudomonas aeruginosa are isolated in patients with nosocomial sinusitis, the same organisms are identified in lower respiratory tract cultures in one third of cases [12]. Ventilator-associated pneumonia is more frequent in patients with confirmed nosocomial sinusitis [7]. In a prospective, randomized study of a strategy to systematically detect and treat nosocomial sinusitis, both radiographic evidence and bacteriologic evidence of sinusitis were found in 55% of febrile, mechanically ventilated patients [11]. All patients in the study were nasotracheally intubated. Seventy percent of patients with positive radiographs had positive quantitative cultures. Ventilator-associated pneumonia occurred in significantly fewer patients (34% vs. 47%, p = 0.02) in the group in which there was systematic screening for and treatment of sinusitis. Taken together, these findings suggest a causal relationship between nosocomial sinusitis and ventilator-associated pneumonia.

Nosocomial sinusitis may also cause fever of unknown origin (FUO) in mechanically ventilated patients. van Zanten and colleagues prospectively studied 351 orotracheally intubated patients with fever for more than 48 hours despite treatment with broad-spectrum antibiotics [3]. In 198 patients, the cause of the fever remained unknown despite initial investigations that included chest radiographs. Based on the results of sinus radiographs and subsequent sinus cultures, infectious sinusitis was confirmed in 105 of 198 (53%) patients with FUO and was found to be the sole cause of fever in 16% of cases.


Diagnosis


Computed Tomography Scans and Radiographs

Computed tomography (CT) scanning has become the imaging modality of choice for the diagnosis of nosocomial sinusitis. Compared with plan sinus radiographs, sinus CT scans can more accurately visualize the ethmoid and sphenoid sinuses and are also superior in differentiating mucosal thickening from air–fluid levels [27]. Portable sinus radiographs performed in the supine position have been recommended to identify sinus infections in critically ill patients who cannot travel for standard sinus films or a CT scan [28]. As discussed earlier, patients may have sterile cultures despite radiographic evidence of sinusitis.


Ultrasonography

With the increasing use of ultrasound in the ICU, there has been a renewed interest in this modality to diagnose nosocomial sinusitis. Although bone often presents obstacles to ultrasound imaging, the anterior walls of the maxillary sinuses are flat bones composed of compact tissue, allowing adequate ultrasound penetration. Prior investigations had demonstrated that ultrasound was 67% sensitive and 87% specific for maxillary sinusitis visualized on CT scans [29]. Accuracy is improved when the patient is in the semi-recumbent position, and not supine [30].

More recent investigations have shown further improvements in diagnostic accuracy. Vargas and coworkers used B-mode ultrasound in the semi-recumbent position in
120 patients with suspected sinusitis [30]. They found that in 36 patients with negative sinus ultrasounds, none had evidence of maxillary sinusitis on CT scan. Extensive maxillary sinus disease is indicated by hyperechogenic visualization of the posterior wall and extension to the internal and and external walls was, in one investigation, found to be 100% specific for total opacification of the sinus on CT scan [31]. On transnasal puncture, fluid could be aspirated from all such patients, and the cultures were positive in 67% of patients [30]. In patients where only the posterior wall of the maxillary sinus is hyperechogenic, 80% of transnasal punctures yield fluid, and cultures are positive in half of those where fluid is obtained.


Rhinoscopy and Antral Aspiration

As reviewed earlier, opacification of the paranasal sinuses in the critically ill patient does not necessarily indicate infectious sinusitis; in some series, a majority of such patients have sterile cultures. Endoscopically obtained cultures from the middle meatus do not correlate with the cultures from the antral lavage aspirate in the febrile ICU patient [32]. Rhinoscopy can add significantly to the diagnostic yield in patients with suspected sinusitis. In patients with both purulent secretions in the middle meatus by rhinoscopy and radiographic evidence of sinusitis, 92% have positive cultures by antral lavage. Although cultures obtained from the maxillary sinus by antral puncture have been considered the gold standard for diagnosis of nosocomial sinusitis, the high correlation between culture findings from the sinuses and those obtained from endotracheal specimens [14] suggests that performing antral puncture to obtain sinus secretions for culture may not be necessary in most cases.


Treatment

Nosocomial sinusitis is most often related to the presence of nasopharyngeal and oropharyngeal catheters and tubes [4,12,33]. Therefore, in addition to antibiotics and decongestants, treatment includes removal of all nasal tubes to eliminate the source of obstruction and irritation in addition to decongestants and antibiotics. Because the spectrum of bacteria causing nosocomial sinusitis is similar to that causing other nosocomial respiratory infections [4,13,15], broad-spectrum Gram-positive and Gram-negative coverage is indicated. With removal of nasal tubes and antibiotic therapy, 67% of patients become afebrile within 48 hours [34]. Because the majority of patients respond to these conservative measures, consideration of surgical drainage can be reserved for patients who fail to respond to medical therapy and in whom no other source of infection is identified.


Sphenoid Sinusitis

Sphenoid sinusitis deserves separate mention because of its potentially fulminant nature and difficulty in diagnosis. Delay in its diagnosis has been associated with serious morbidity and mortality [35,36]. The typical presentation of acute infection is severe headache that interferes with sleep, often accompanied by fever and nasal discharge [35,36]. Neurologic deficits can be prominent features; trigeminal hyperesthesia or hypoesthesia occurs in one third of cases [36]. Gram-positive organisms have been isolated from the cultures of most patients with acute sinusitis, whereas equal numbers of Gram-positive and facultative Gram-negative pathogens have been cultured from those with chronic sphenoid sinusitis [35,36]. Serious sequelae including permanent neurologic deficits and death can result from the spread to nearby structures (e.g., cavernous sinus, pituitary gland, optic chiasm). When findings suggest extension of the infection, early CT scan of the sinuses is essential. Surgical drainage may be necessary if symptoms persist or neurologic signs develop while the patient is receiving appropriate antibiotic therapy.


Otogenic Infections

Serious complications of otologic infection occur rarely [37,38]. Anatomically, the external auditory canal is one-half cartilaginous, and the medial half tunnels through the temporal bone. The auditory tube (pharyngotympanic tube) passes into the nasopharynx along the superior border of the lateral pharyngeal space (LPS). Other structures that are accessible by infection include the mastoid air cells, the jugular foramen, cranial nerves (especially the facial nerve), the internal carotid artery, and the dura mater of the posterior cranial fossa.


Mastoiditis

Acute mastoiditis is an uncommon complication of otitis media, seen primarily in children and young adults. Inflammation spreads from the middle ear to the modified respiratory mucosa lining of the mastoid air cells. The closed space infection leads to accumulation of purulent exudate, increased pressure, and bony necrosis. Pain, typically postauricular, fever, and abnormal tympanic membranes are the most common findings on presentation [39]. In approximately 50% of patients with mastoiditis, acute otitis media was diagnosed within days to weeks of admission [40]. Radiographic abnormalities of the mastoid are common and demonstrate opacification or cloudiness of the mastoid air cells and, less frequently, evidence of bone destruction [40]. CT scan of the temporal bone can identify and confirm intracranial complications [40]. Up to 25% of patients have complications on presentation, including subperiosteal abscess with or without epidural abscess, meningitis, cranial nerve involvement, and sigmoid sinus thrombophlebitis [41]. Lateral sinus thrombosis secondary to mastoiditis [42] has also been associated with septic pulmonary emboli [43,44]. The most common bacterial organisms isolated include S. pneumoniae, group A streptococci, and S. aureus; Pseudomonas may be commonly isolated as well [39]. Treatment includes broad-spectrum antibiotics that can adequately penetrate cerebrospinal fluid and surgical intervention for those who fail to improve within 24 to 72 hours.

Chronic mastoiditis and chronic otitis media result from a progressive inflammatory process that usually leads to obstruction of the communication between the middle ear and mastoid (aditus) or the middle ear and nasopharynx (eustachian tube) [39]. Often a cholesteatoma or epidermal inclusion cyst within the tympanomastoid compartment may be involved and may become secondarily infected [39]. Presenting symptoms include hearing loss, painless otorrhea, and tympanic membrane perforation [39]. Other symptoms (e.g., facial nerve paresis, headache, ear pain, fever) may be present if complications have occurred. Uncomplicated chronic otitis media and mastoiditis are treated medically with local hygiene, topical antibiotics often including a corticosteroid, and oral, or infrequently parenteral, antibiotics [39]. Broad-spectrum antibiotics are required to cover a wide range of aerobic and anaerobic organisms. Surgery is usually reserved for recurrent disease, often associated with a cholesteatoma, which can be identified by CT scan of the temporal bone [39].



Malignant External Otitis

Malignant, or necrotizing, external otitis (MEO) most often affects elderly diabetic patients. Diabetic microangiopathy, an altered immune response, the biochemistry of diabetic cerumen, and characteristics of the usual etiologic organism have been implicated in the pathogenesis of MEO [45]. MEO most commonly presents with otalgia; granulation tissue in the external auditory canal, most prominently at the osteocartilaginous junction; and often purulent and fetid otorrhea [45]. Spread of infection is anteriorly toward the parotid compartment or downward into the temporal bone; spread to the mastoid is less common [37]. Extension leads to pain and tenderness of the tissues around the ear. In MEO, P. aeruginosa is the most commonly implicated pathogen [45]. Patients with acquired immunodeficiency syndrome may develop infection from a wider variety of organisms and may accumulate less granulation tissue in the external auditory canal [46]. Aspergillus species have been identified, primarily in immunocompromised patients [47,48]. Osteomyelitis [49], cranial nerve paralysis [50], and central nervous system (meningitis) and vascular (thrombophlebitis) spread [51] are potential severe and fatal complications of MEO.

CT and magnetic resonance imaging scanning, along with technetium-99 bone scans, are valuable components of the diagnostic evaluation of MEO [51]. The therapy for MEO includes prolonged antibiotics directed against P. aeruginosa unless the culture data suggest otherwise. This may include a semisynthetic penicillin or ceftazidime with an aminoglycoside. Oral fluoroquinolones have also been used successfully [51]. The duration of treatment is not clearly defined. Surgical intervention can be complementary and is based on the response to conservative treatment and the presence of complications.


Supraglottitis (Epiglottitis)

Acute supraglottitis is an uncommon infection of the structures located above the glottis. These structures include the epiglottis, aryepiglottic folds, arytenoids, pharynx, uvula, and tongue base. The true vocal cords are rarely involved. The infection may progress to abrupt and fatal airway obstruction. This entity is well described in children, in whom the presentation and course are usually fulminant. In the pediatric population, increased awareness and prophylactic airway control have reduced overall mortality to less than 1% [52,53]. In children, H. influenzae type B is the most identifiable causative organism. Since the introduction of a vaccine against H. influenzae type B in 1995, the incidence of pediatric epiglottitis has decreased substantially [54,55,56]. As a result, it appears supraglottitis is becoming a disease of adults, in whom the course is frequently indolent but with a mortality rate that may reach 5%, mostly because of misdiagnosis and unexpected airway obstruction [52,56,57,58,59].


Incidence

In the post–H. influenzae type B vaccine era, the annual incidence of acute supraglottitis is estimated between 0.6 and 0.78 cases per 100,000 immunized children [58]. In adults, the incidence of acute supraglottitis has increased from 0.79 cases per 100,000 adults in 1986 to 2.1 cases per 100,000 adults in 2005 [58]. Adults with acute supraglottitis usually present in their 40s and 50s, with a male preponderance, and children usually present between the ages of 2 and 5 years [58].








Table 67.1 Organisms Implicated in acute Epiglottitis








































Organism References
Haemophilus influenzae [3,5,15,17]
Streptococcus pneumoniae [18,19]
β-Hemolytic streptococci [9,20,21]
Staphylococcus aureus [21,23,24]
Klebsiella pneumoniae [24,25]
Neisseria meningitides [12]
Bacteroides species [26]
Haemophilus parainfluenzae [15,27]
Candida albicansa [28,29,30,31]
Pasteurella multocida [32,33]
Herpes simplex virus type 1b [34,35]
aCultured from epiglottic swab or seen on autopsy; all others recovered from blood.
bEpiglottis biopsy specimen histology and viral culture.


Pathogenesis and Pathophysiology

In children, the inflammation is mainly restricted to the epiglottis because of loose mucosa on its lingual aspect. This provides a readily available space for edema to collect within. Swelling reduces the airway aperture by curling the epiglottis posteriorly and inferiorly, accentuating the juvenile omega shape. When edema spreads to involve the aryepiglottic folds, respiratory distress can occur as inspiration draws these structures downward, further exacerbating the obstruction and resulting in stridor. The adult airway is relatively protected because the larynx is larger and the epiglottis is shaped more like a spatula.


Etiology

Although various bacteria, viruses, and Candida species have been recognized as causes of acute supraglottitis (Table 67.1) [60,61,62,63,64,65,66,67,68], H. influenzae type B is the most common cause identified in pediatric and adult cases [60,68]. Although vaccine failure has been reported in children who had received an early polysaccharide vaccine [61], significant declines in the incidence of this infection have been noted with the use of conjugated vaccines that can be administered to even younger children [60]. In adults, blood cultures are positive in less than 20% of cases, and H. influenzae is the isolate in one third of these cases [62,68].

Noninfectious causes of acute supraglottitis have been described and include thermal injuries related to inhalation drug use, ingestion of hot food, apparent caustic injury from aspiration, and posttransplant lymphoproliferative disorder [63,64]. McKinney and Grigg [66] described a case of epiglottitis after general anesthesia administered via a laryngeal mask.


Diagnosis


History and Physical Examination

In children, the classic presentation is of a 3-year-old child who initially complains of a sore throat followed by dysphagia and/or odynophagia, which then progresses within hours to stridor. The child prefers to sit, leaning forward, and usually appears pale and frightened. Breathing is slow and quiet
with characteristic drooling noted. These symptoms may lead to sudden respiratory depression and arrest. The progression of symptoms can be remembered as the four “Ds”: dysphagia, dysphonia, drooling, and distress.

In adults, the classic presentation is more the exception than the rule, and as such, the frequency of misdiagnosis has been reported as high as 60% to 75% [52,58,59]. More than 90% of adults seek medical attention complaining of sore throat with or without dysphagia [63,67]. Many patients report antecedent upper respiratory tract infections [60,68]. Other less common signs and symptoms are respiratory distress, muffled voice, drooling, fever, and stridor [52,53,63,67,68]. Hoarseness or true dysphonia is not observed because the process usually spares the true vocal cords. Children and adults often prefer an upright posture with the neck extended and mouth slightly open [69].

The duration of symptoms varies, ranging from hours to several days [70]. Patients presenting within 8 hours of the onset of symptoms are more likely to have signs of upper airway obstruction [71]. In general, patients who present early in their disease course have more severe symptoms, fever, and leukocytosis. They are also more likely to be infected with H. influenzae [70]. These patients are at increased risk of needing artificial airways and of dying [72].

Evaluation of patients with suspected supraglottitis depends, in part, on their age and the severity of their symptoms. In young children with a classic presentation, pharyngeal examination should not be attempted. An artificial airway should be established in the controlled setting of an operating room, where an examination can be performed with less risk of airway obstruction. When there is doubt about the diagnosis in a stable child, a lateral neck radiograph to look for the classic, “thumb sign” of a swollen epiglottis is the proper first step (Fig. 67.1).

In older children and adults, supraglottitis should be considered when sore throat and dysphagia seem to be out of proportion to visible signs of pharyngitis. In this situation, if the patient has no respiratory distress, examination of the larynx and supralaryngeal structures is recommended. The epiglottis may appear cherry red in color but more commonly is pale and edematous. Other supraglottic structures may be edematous as well, resulting in the inability to visualize the vocal cords [60].






Figure 67.1. Acute supraglottitis. Lateral radiographs of the neck obtained with soft tissue technique in a 2-year-old child (A) and a 42-year-old adult (B). There is epiglottic (e) swelling (thumb sign), thickening of the aryepiglottic folds (a), and narrowing of the vallecula (arrow) in both patients. Compare with normal epiglottis in Figure 67.11(a).


Diagnostic Tests

A lateral soft tissue radiograph of the neck has frequently been used to diagnose acute supraglottitis [60]. The radiograph should be taken in the upright position to avoid pooling of secretions posteriorly and potentially increasing the obstruction. Because the disease is unpredictable, the patient must be observed at all times by someone skilled in airway management. Characteristic radiographic changes (see Fig. 67.1) have been detected in most endoscopically proven infections [72]. These changes include epiglottic thickening of more than 8 mm (producing the thumb sign) [73], swelling of the aryepiglottic folds of more than 7 mm [73], ballooning of the hypopharynx [74], and narrowing of the vallecula [74]. However, it is important to remember that a normal radiograph is inadequate to exclude the diagnosis of supraglottitis, and direct visualization of the structures should be performed if suspicion is high [75].

Only gold members can continue reading. Log In or Register to continue

Sep 5, 2016 | Posted by in CRITICAL CARE | Comments Off on Severe Upper Airway Infections

Full access? Get Clinical Tree

Get Clinical Tree app for offline access