Pulse Oximetry, Capnography, and Blood Gas Analysis

Chapter 5 Pulse Oximetry, Capnography, and Blood Gas Analysis




Pulse oximetry



1 What is pulse oximetry and how does it work?


Pulse oximetry is the continuous noninvasive estimation of arterial hemoglobin-oxygen saturation. It is used routinely to monitor oxygenation in diverse clinical settings, including the operating room, emergency department, and intensive care unit. Clinical use of pulse oximetry falls into two main categories:



Pulse oximeters function by transmitting red light (660 nm, absorbed by oxyhemoglobin [O2Hb]) and infrared light (940 nm, absorbed by deoxyhemoglobin [deoxyHb]) from two light-emitting diodes (LEDs) through tissue containing pulsatile blood. The saturation of hemoglobin with oxygen is a function of the ratio of red to infrared light absorption from the pulsatile and nonpulsatile components of the signals. Thus the saturation (SpO2) is a function of the ratio of two ratios, cancelling out most differences caused by finger thickness, pigmentation, and other factors. A microprocessor algorithm is used to calculate the arterial saturation on the basis of calibration studies done by comparing true saturation measured on arterial blood with a CO-oximeter with the pulse oximeter reading. This calibration is factory set and is not adjustable.


Pulse oximeter probes can be applied to any site that allows orientation of the LED and photodetector opposite one another across a vascular bed. If the tissue is too thick, the signal is attenuated before reaching the detector and the oximeter cannot function. Oximeters can be applied to fingers, toes, earlobes, lips, cheeks, and the bridge of the nose. Esophageal and oral probes are also in development. Several manufacturers offer reflectance oximeter probes that can be applied to flat tissue surfaces such as the forehead or chest. Recently introduced earlobe-mounted sensors combine a pulse oximeter and a transcutaneous CO2 electrode. Many pulse oximeters now include noise and artifact rejection software. This refinement aids the determination of SpO2 in patients with low perfusion or motion (e.g., tremor).






Capnography



5 What is capnography, and how does it work?


Capnography is the continuous measurement and graphic display of exhaled carbon dioxide. It is a noninvasive method to assess both ventilation and cardiac output. Most commonly, infrared light absorption by CO2 is the method used to determine the CO2 concentration. Sampling usually occurs in one of two ways. In a mainstream capnograph, CO2 levels are measured with a sensor (light source and detector) placed directly in the patient’s breathing circuit. With sidestream capnography, a continuous sample of airway gas is diverted from the patient’s breathing circuit or airway to the capnograph for analysis and display. The mainstream method has a very rapid response time, but, because the sensor must be placed near the patient, long-term monitoring may be cumbersome. The sidestream method, because it uses a thin plastic sampling tube, is lighter and allows for greater flexibility, but, because transit time is unavoidable, a slower response time (approximately 3-5 seconds) results. Because of mixing of gases in the sample stream, the absolute values of the plateau and baseline may also be attenuated. The sidestream device can also be used with a modified nasal cannula or face mask to monitor CO2 concentrations in the breath of patients who do not have endotracheal tubes in place.


The most commonly used method for measuring carbon dioxide in expired gases is infrared light absorbance. In addition, technologies such as Raman spectrometry and mass spectrometry are reliable, accurate, and responsive but generally more expensive. However, these options also offer detection of a variety of other gases and anesthetic vapors. Colorimetric detectors that attach to endotracheal tubes are available to help assess endotracheal tube placement. The colorimetric detector uses a pH-sensitive indicator strip to semiquantitatively detect exhaled CO2. Although portable and convenient, these devices yield results that are often more difficult to interpret than conventional capnographs, and they do not provide continuous measurement of CO2.

< div class='tao-gold-member'>

Jul 6, 2016 | Posted by in CRITICAL CARE | Comments Off on Pulse Oximetry, Capnography, and Blood Gas Analysis

Full access? Get Clinical Tree

Get Clinical Tree app for offline access