Aspects of Quantitative and Semiquantitative Echocardiography




The aim in this chapter is to explain the theory underlying some quantitative and semiquantitative methods used in perioperative TEE to estimate cardiac output, to evaluate the orifice size in valve lesions, and to estimate pressures and pressure gradients. Most quantitative methods involve simple algebra, geometry, and physics; however, it is often difficult to obtain accurate data for the calculations used in these methods, so their results should always be interpreted in the light of other echocardiographic and clinical information. In this chapter, the emphasis is on basic principles, grounded, where possible, in concepts likely to be familiar to readers and therefore easy to remember. The theory presented here should inform the use of formulas commonly employed in echocardiography; their clinical application is discussed in those chapters that deal with the relevant clinical situations. These formulas are summarized in two tables: Table 21-1 (dealing with calculations based on estimations of flow) and Table 21-2 (dealing with estimations of pressure gradients, pressure acceleration, and pressure deceleration). Reference to these tables while reading the text will assist in following the development of the concepts presented in this chapter and in understanding the interrelationships among the equations.



TABLE 21-1

Equations Used to Estimate Flows, and Hence Orifice Areas, in Regurgitant or Stenotic Valves












































































Number Equation Comment
21-1 <SPAN role=presentation tabIndex=0 id=MathJax-Element-1-Frame class=MathJax style="POSITION: relative" data-mathml='V=st’>V=stV=st
V=st
V=st
V = s t
Velocity(V): As for a moving object, but in this context assumptions include constant V or V mean , nonpulsatile laminar flow, and a flat flow profile.
21-2 <SPAN role=presentation tabIndex=0 id=MathJax-Element-2-Frame class=MathJax style="POSITION: relative" data-mathml='Q=CSA×V’>Q=CSA×VQ=CSA×V
Q=CSA×V
Q=CSA×V
Q = CSA × V
Flow : Volume per unit of time. CSA is the cross-sectional area.
21-3 (and see 7-6, 7-7, 19-8) <SPAN role=presentation tabIndex=0 id=MathJax-Element-3-Frame class=MathJax style="POSITION: relative" data-mathml='SV=CSA×VTI’>SV=CSA×VTISV=CSA×VTI
SV=CSA×VTI
SV=CSA×VTI
SV = CSA × VTI
Stroke volume (SV) : Because flow is pulsatile, VTI (equal to distance traveled in the given time) is used.
21-4 <SPAN role=presentation tabIndex=0 id=MathJax-Element-4-Frame class=MathJax style="POSITION: relative" data-mathml='CO=SV×HR’>CO=SV×HRCO=SV×HR
CO=SV×HR
CO=SV×HR
CO = SV × HR
Cardiac output : Heart rate and SV should be measured at the same time—a change in one may be associated with a change in the other.
21-5 <SPAN role=presentation tabIndex=0 id=MathJax-Element-5-Frame class=MathJax style="POSITION: relative" data-mathml='CI=COBSA’>CI=COBSACI=COBSA
CI=COBSA
CI=COBSA
CI = CO BSA
Cardiac index.
21-6 <SPAN role=presentation tabIndex=0 id=MathJax-Element-6-Frame class=MathJax style="POSITION: relative" data-mathml='CSAAV=CSALVOT×Vmax−LVOTVmax−AV’>CSAAV=CSALVOT×VmaxLVOTVmaxAVCSAAV=CSALVOT×VmaxLVOTVmaxAV
CSAAV=CSALVOT×Vmax−LVOTVmax−AV
CSAAV=CSALVOT×VmaxLVOTVmaxAV
CSA AV = CSA LVOT × V max − LVOT V max − AV
Orifice area in aortic stenosis : <SPAN role=presentation tabIndex=0 id=MathJax-Element-7-Frame class=MathJax style="POSITION: relative" data-mathml='Vmax−LVOTVmax−AV’>VmaxLVOTVmaxAVVmaxLVOTVmaxAV
Vmax−LVOTVmax−AV
VmaxLVOTVmaxAV
V max − LVOT V max − AV
is the Doppler velocity index. Values <0.25 suggest severe aortic stenosis.
21-7 (see 10-2) <SPAN role=presentation tabIndex=0 id=MathJax-Element-8-Frame class=MathJax style="POSITION: relative" data-mathml='CSAAV=CSALVOT×VTILVOTVTIAV’>CSAAV=CSALVOT×VTILVOTVTIAVCSAAV=CSALVOT×VTILVOTVTIAV
CSAAV=CSALVOT×VTILVOTVTIAV
CSAAV=CSALVOT×VTILVOTVTIAV
CSA AV = CSA LVOT × VTI LVOT VTI AV
Orifice area in aortic stenosis : Alternative to Equation 21-6 .
21-8 (and see 9-8, 9-9) <SPAN role=presentation tabIndex=0 id=MathJax-Element-9-Frame class=MathJax style="POSITION: relative" data-mathml='CSAMV×VTIMVin diastole=CSALVOT×VTILVOTin systole’>CSAMV×VTIMVin diastole=CSALVOT×VTILVOTin systoleCSAMV×VTIMVin diastole=CSALVOT×VTILVOTin systole
CSAMV×VTIMVin diastole=CSALVOT×VTILVOTin systole
CSAMV×VTIMVin diastole=CSALVOT×VTILVOTin systole
CSA MV × VTI MV in diastole = CSA LVOT × VTI LVOT in systole
Orifice area in mitral stenosis : No regurgitation.
21-9 <SPAN role=presentation tabIndex=0 id=MathJax-Element-10-Frame class=MathJax style="POSITION: relative" data-mathml='CSAMV×VTIMVin diastole=CSALVOT×VTILVOT+EROMV×VTIMV−regurgitantin systole’>CSAMV×VTIMVin diastole=CSALVOT×VTILVOT+EROMV×VTIMVregurgitantin systoleCSAMV×VTIMVin diastole=CSALVOT×VTILVOT+EROMV×VTIMVregurgitantin systole
CSAMV×VTIMVin diastole=CSALVOT×VTILVOT+EROMV×VTIMV−regurgitantin systole
CSAMV×VTIMVin diastole=CSALVOT×VTILVOT+EROMV×VTIMVregurgitantin systole
CSA MV × VTI MV in diastole = CSA LVOT × VTI LVOT + ERO MV × VTI MV − regurgitant in systole
Orifice area in mitral stenosis : Mitral regurgitation.
21-10 <SPAN role=presentation tabIndex=0 id=MathJax-Element-11-Frame class=MathJax style="POSITION: relative" data-mathml='CSAMV×VTIMV+EROAV×VTIAV−regurgitantin diastole=CSALVOT×VTILVOTin systole’>CSAMV×VTIMV+EROAV×VTIAVregurgitantin diastole=CSALVOT×VTILVOTin systoleCSAMV×VTIMV+EROAV×VTIAVregurgitantin diastole=CSALVOT×VTILVOTin systole
CSAMV×VTIMV+EROAV×VTIAV−regurgitantin diastole=CSALVOT×VTILVOTin systole
CSAMV×VTIMV+EROAV×VTIAVregurgitantin diastole=CSALVOT×VTILVOTin systole
CSA MV × VTI MV + ERO AV × VTI AV − regurgitant in diastole = CSA LVOT × VTI LVOT in systole
Orifice area in mitral stenosis : Aortic regurgitation.
21-11 (and see 9-3) <SPAN role=presentation tabIndex=0 id=MathJax-Element-12-Frame class=MathJax style="POSITION: relative" data-mathml='Vregurgitant jet=SVregurgitant valve−SVnormal valve’>Vregurgitant jet=SVregurgitant valveSVnormal valveVregurgitant jet=SVregurgitant valveSVnormal valve
Vregurgitant jet=SVregurgitant valve−SVnormal valve
Vregurgitant jet=SVregurgitant valveSVnormal valve
V regurgitant jet = SV regurgitant valve − SV normal valve
Regurgitant volume : In mitral or aortic regurgitation, SV MV is given by CSA MV × VTI MV and SV AV by either CSA AV × VTI AV or CSA LVOT × VTI LVOT . Equivalent equations would apply in theory on the right side of the heart. In mitral regurgitation, >60 mL/beat is severe and <30 mL/beat is mild.
21-12 (and see 9-4) <SPAN role=presentation tabIndex=0 id=MathJax-Element-13-Frame class=MathJax style="POSITION: relative" data-mathml='RF=Vregurgitant jetSVregurgitant valve’>RF=Vregurgitant jetSVregurgitant valveRF=Vregurgitant jetSVregurgitant valve
RF=Vregurgitant jetSVregurgitant valve
RF=Vregurgitant jetSVregurgitant valve
RF = V regurgitant jet SV regurgitant valve
Regurgitant fraction : In mitral regurgitation, >50% is severe and <30% is mild.
21-13 <SPAN role=presentation tabIndex=0 id=MathJax-Element-14-Frame class=MathJax style="POSITION: relative" data-mathml='QpQs=SVright heartSVleft heart’>QpQs=SVright heartSVleft heartQpQs=SVright heartSVleft heart
QpQs=SVright heartSVleft heart
QpQs=SVright heartSVleft heart
Q p Q s = SV right heart SV left heart
Shunt fraction : Usually given by <SPAN role=presentation tabIndex=0 id=MathJax-Element-15-Frame class=MathJax style="POSITION: relative" data-mathml='CSARVOT×VTIRVOTCSALVOT×VTILVOT’>CSARVOT×VTIRVOTCSALVOT×VTILVOTCSARVOT×VTIRVOTCSALVOT×VTILVOT
CSARVOT×VTIRVOTCSALVOT×VTILVOT
CSARVOT×VTIRVOTCSALVOT×VTILVOT
CSA RVOT × VTI RVOT CSA LVOT × VTI LVOT
; 5 to 10 measurements are needed to allow for the effects of respiration.
21-14 <SPAN role=presentation tabIndex=0 id=MathJax-Element-16-Frame class=MathJax style="POSITION: relative" data-mathml='CSAPISA=2πr2′>CSAPISA=2πr2CSAPISA=2πr2
CSAPISA=2πr2
CSAPISA=2πr2
CSA PISA = 2 π r 2
Surface area of PISA in mitral, tricuspid, or aortic incompetence : The Nyquist limit should be adjusted to produce a hemispheric PISA to avoid inaccuracies (see text for details).
21-15 <SPAN role=presentation tabIndex=0 id=MathJax-Element-17-Frame class=MathJax style="POSITION: relative" data-mathml='CSAPISA=2πr2×α180′>CSAPISA=2πr2×α180CSAPISA=2πr2×α180
CSAPISA=2πr2×α180
CSAPISA=2πr2×α180
CSA PISA = 2 π r 2 × α 180
Surface area of PISA in mitral stenosis : α is the angle between the valve leaflets.
21-16 (and see 9-1, 9-2, 9-7) <SPAN role=presentation tabIndex=0 id=MathJax-Element-18-Frame class=MathJax style="POSITION: relative" data-mathml='CSAvalve=CSAPISA×NLVmax−valve’>CSAvalve=CSAPISA×NLVmaxvalveCSAvalve=CSAPISA×NLVmaxvalve
CSAvalve=CSAPISA×NLVmax−valve
CSAvalve=CSAPISA×NLVmaxvalve
CSA valve = CSA PISA × NL V max − valve
Orifice area by PISA : Used to measure orifice area in a stenotic MV or a regurgitant MV, TV, or AV. The Nyquist limit is effectively V max−PISA , so this is an application of the continuity principle equivalent to Equation 21-6 (but note that the Nyquist limit is not an average V, so VTI valve would be incorrect and Equations 21-7 to 21-10 are not applicable).
21-17 <SPAN role=presentation tabIndex=0 id=MathJax-Element-19-Frame class=MathJax style="POSITION: relative" data-mathml='CSAMV=0.5r2cm2′>CSAMV=0.5r2cm2CSAMV=0.5r2cm2
CSAMV=0.5r2cm2
CSAMV=0.5r2cm2
CSA MV = 0.5 r 2 cm 2
Orifice area by PISA in mitral regurgitation : Assumes Nyquist limit has been set to 40 cms/sec, in which case a PISA radius of ≥1 cm implies severe regurgitation (because severe if EROA ≥ 0.4 cm 2 ).


TABLE 21-2

Equations Involving the Simplified Bernoulli Equation, Pressure Acceleration, and Pressure Deceleration































































Number Equation Comment
21-18 <SPAN role=presentation tabIndex=0 id=MathJax-Element-20-Frame class=MathJax style="POSITION: relative" data-mathml='P1−P2=QR’>P1P2=QRP1P2=QR
P1−P2=QR
P1P2=QR
P 1 − P 2 = QR
Pressure (P), flow (Q), and resistance (R): Analogous to Ohm’s law in physics. Laminar flow is assumed. If Q = 0 or R = 0, P 1 = P 2 .
21-19 <SPAN role=presentation tabIndex=0 id=MathJax-Element-21-Frame class=MathJax style="POSITION: relative" data-mathml='ΔP=4(V22−V12)’>ΔP=4(V22V21)ΔP=4(V22V21)
ΔP=4(V22−V12)
ΔP=4(V22V21)
Δ P = 4 ( V 2 2 − V 1 2 )
The simplified Bernoulli equation (an approximation): Use Equation 21-19 if V 1 > 1.5 m/sec. Velocity (V) must be in m/sec if Δ P is to be in mm Hg. Applies to V max and V mean (but see text for details).
21-20 <SPAN role=presentation tabIndex=0 id=MathJax-Element-22-Frame class=MathJax style="POSITION: relative" data-mathml='ΔP=4V2′>ΔP=4V2ΔP=4V2
ΔP=4V2
ΔP=4V2
Δ P = 4 V 2
21-21 <SPAN role=presentation tabIndex=0 id=MathJax-Element-23-Frame class=MathJax style="POSITION: relative" data-mathml='ΔPmean=2.4Vmax2′>ΔPmean=2.4V2maxΔPmean=2.4V2max
ΔPmean=2.4Vmax2
ΔPmean=2.4V2max
Δ P mean = 2.4 V max 2
Mean gradient in aortic stenosis.
21-22 a <SPAN role=presentation tabIndex=0 id=MathJax-Element-24-Frame class=MathJax style="POSITION: relative" data-mathml='PRV−systolic=PRA+ΔPRV−RA’>PRVsystolic=PRA+ΔPRVRAPRVsystolic=PRA+ΔPRVRA
PRV−systolic=PRA+ΔPRV−RA
PRVsystolic=PRA+ΔPRVRA
P RV − systolic = P RA + Δ P RV − RA
RV systolic pressure from the gradient across a regurgitant TV. Also gives pulmonary arterial systolic pressure if PV is normal.
21-23 (and see 19-1,19-2) <SPAN role=presentation tabIndex=0 id=MathJax-Element-25-Frame class=MathJax style="POSITION: relative" data-mathml='PPA−systolic=PRV−systolic+ΔPPA−RV’>PPAsystolic=PRVsystolic+ΔPPARVPPAsystolic=PRVsystolic+ΔPPARV
PPA−systolic=PRV−systolic+ΔPPA−RV
PPAsystolic=PRVsystolic+ΔPPARV
P PA − systolic = P RV − systolic + Δ P PA − RV
Pulmonary arterial systolic pressure in the presence of pulmonary stenosis (uncommon). Δ P PA−RV is obtained from the jet through PV.
21-24 <SPAN role=presentation tabIndex=0 id=MathJax-Element-26-Frame class=MathJax style="POSITION: relative" data-mathml='PPA−mean=PRA+ΔPPA−RV−early diastolic’>PPAmean=PRA+ΔPPARVearly diastolicPPAmean=PRA+ΔPPARVearly diastolic
PPA−mean=PRA+ΔPPA−RV−early diastolic
PPAmean=PRA+ΔPPARVearly diastolic
P PA − mean = P RA + Δ P PA − RV − early diastolic
Pulmonary arterial mean pressure using the gradient across a regurgitant PV, calculated using the peak (early) diastolic regurgitant V through the PV. RV pressure is assumed equal to RA pressure in diastole.
21-25 (and see 19-3,19-4) <SPAN role=presentation tabIndex=0 id=MathJax-Element-27-Frame class=MathJax style="POSITION: relative" data-mathml='PPA−end diastolic=PRA+ΔPPA−RV−end diastolic’>PPAend diastolic=PRA+ΔPPARVend diastolicPPAend diastolic=PRA+ΔPPARVend diastolic
PPA−end diastolic=PRA+ΔPPA−RV−end diastolic
PPAend diastolic=PRA+ΔPPARVend diastolic
P PA − end diastolic = P RA + Δ P PA − RV − end diastolic
Pulmonary arterial end-diastolic pressure: End-diastolic regurgitant V through the PV is taken from a shoulder, which can be identified late in diastole (as it can with aortic regurgitation)–(see Figure 21-6 ): this is used to calculate Δ P PA−RV−end diastolic . RV pressure is assumed equal to RA pressure in diastole.
21-26 (and see 19-5,19-6) <SPAN role=presentation tabIndex=0 id=MathJax-Element-28-Frame class=MathJax style="POSITION: relative" data-mathml='PLA=PLV−systolic−ΔPLV−LA’>PLA=PLVsystolicΔPLVLAPLA=PLVsystolicΔPLVLA
PLA=PLV−systolic−ΔPLV−LA
PLA=PLVsystolicΔPLVLA
P LA = P LV − systolic − Δ P LV − LA
LA pressure from the gradient across a regurgitant MV: This involves subtracting a large number from another very large number to obtain a small number, and so it is susceptible to error.
21-27 <SPAN role=presentation tabIndex=0 id=MathJax-Element-29-Frame class=MathJax style="POSITION: relative" data-mathml='PLA=PRA+ΔPLA−RA’>PLA=PRA+ΔPLARAPLA=PRA+ΔPLARA
PLA=PRA+ΔPLA−RA
PLA=PRA+ΔPLARA
P LA = P RA + Δ P LA − RA
LA pressure from the gradient across an ASD: With TEE, it is difficult to align the Doppler signal with the flow across an ASD, and any error in estimation of V is squared.
21-28 <SPAN role=presentation tabIndex=0 id=MathJax-Element-30-Frame class=MathJax style="POSITION: relative" data-mathml='LVEDP=Paorta−diastolic−ΔPaorta−LV’>LVEDP=PaortadiastolicΔPaortaLVLVEDP=PaortadiastolicΔPaortaLV
LVEDP=Paorta−diastolic−ΔPaorta−LV
LVEDP=PaortadiastolicΔPaortaLV
LVEDP = P aorta − diastolic − Δ P aorta − LV
LV end-diastolic pressure from the gradient across a regurgitant AV: Δ P aorta−diastolic is usually obtained from a peripheral arterial line. V for estimating Δ P aorta−LV with Equation 21-20 is taken at the end of diastole. In practice, peripheral arterial pressure may not equal central aortic pressure in the presence of aortic regurgitation; there may be considerable error inherent in subtracting a large number from a large number to obtain a small number, and it can be difficult to obtain a satisfactory view for estimating the V of the aortic regurgitant jet.
21-29 (and 7-11) <SPAN role=presentation tabIndex=0 id=MathJax-Element-31-Frame class=MathJax style="POSITION: relative" data-mathml='dP/dt=32mm Hgt’>dP/dt=32mm HgtdP/dt=32mm Hgt
dP/dt=32mm Hgt
dP/dt=32mm Hgt
dP / dt = 32 mm Hg t
LV systolic function from flow acceleration in a mitral regurgitant jet: t is the time for the flow V or a mitral regurgitant jet to increase from 1 to 3 m/sec. Values >1200 mm Hg/sec are normal and <800 mm Hg/sec indicate severe dysfunction. Alternatively, t can be used directly, equivalent values being <26 msec and >40 msec, respectively.
21-30 <SPAN role=presentation tabIndex=0 id=MathJax-Element-32-Frame class=MathJax style="POSITION: relative" data-mathml='VP2=0.7VP’>VP2=0.7VPVP2=0.7VP
VP2=0.7VP
VP2=0.7VP
V P 2 = 0.7 V P
Basis of pressure half-time (Pt 1/2 ) estimation: Pt 1/2 is the time for the jet V to fall from any given value ( V P —usually V max is chosen) to 0.7 V P . Pt 1/2 is inversely related to orifice size, so it increases as mitral stenosis becomes more severe and decreases as aortic regurgitation becomes more severe.
In mitral stenosis, Pt 1/2 is inaccurate in the presence of AV block, with mechanical valves and with the compliance changes that follow valvuloplasty; it shortens with increased cardiac output and any cause of elevated left ventricular end-diastolic pressure, including more than mild aortic regurgitation (but severe aortic regurgitation may impeded the opening of the anterior leaflet of the MV and artificially prolong Pt 1/2 ).
In aortic regurgitation, Pt 1/2 < 200 msec indicates a severe lesion. Pt 1/2 is shortened by increased systemic vascular resistance and reduced LV compliance and is unreliable in the presence of MV disease.
21-31 (and see 19-5,19-6) <SPAN role=presentation tabIndex=0 id=MathJax-Element-33-Frame class=MathJax style="POSITION: relative" data-mathml='CSAMV=220Pt1/2′>CSAMV=220Pt1/2CSAMV=220Pt1/2
CSAMV=220Pt1/2
CSAMV=220Pt1/2
CSA MV = 220 Pt 1 / 2
Orifice area in mitral stenosis using Pt 1/2 : Pt 1/2 > 220 equates to CSA MV < 1 cm 2 and severe stenosis.

Only gold members can continue reading. Log In or Register to continue

May 1, 2019 | Posted by in ANESTHESIA | Comments Off on Aspects of Quantitative and Semiquantitative Echocardiography

Full access? Get Clinical Tree

Get Clinical Tree app for offline access