1 Classification of Endoscopic Transnasal Approaches to the Skull Base and Adjacent Areas



10.1055/b-0039-172563

1 Classification of Endoscopic Transnasal Approaches to the Skull Base and Adjacent Areas

Piero Nicolai, Marco Ferrari, Roberto Maroldi, Alperen Vural, Marco Maria Fontanella, Luigi Fabrizio Rodella, Lena Hirtler, Manfred Tschabitscher

The development of transnasal endoscopic techniques has provided immense perspectives in the field of skull base surgery. Various meticulous anatomical studies have improved the understanding of skull base anatomy from the endoscopic perspective, and endoscopic transnasal surgery has become notably valuable for accessing and treating pathologies of the skull base. 1 3 This significant evolution, which started with pituitary surgery, has progressively provided a myriad of approaches extending from the posterior frontal plate to axis (C2) and laterally to the parasellar area, petrous apex, jugular foramen, infratemporal fossa, and upper parapharyngeal space. 1 , 4 8


By using the natural surgical corridor of the sinonasal tract, transnasal approaches give access to a wide range of sites, which can harbor a proportionally wide range of lesions. The ideal approach to a specific lesion should be selected with the intent to provide an exposure that avoids complications and achieves complete surgical resection and adequate reconstruction. Another characteristic should be the potential of being expanded in case unanticipated extension of the lesion is detected, and permit identification and protection of important neurovascular structures. 3 , 9 Consequently, selection of the surgical approach is mostly based on the type and location of the disease, its relationships with critical structures, and characteristics of the expected defect. 1 , 6 , 9 Specifically, critical neurovascular structures must be located around the perimeter of the corridor. This allows for direct manipulation of the lesion, minimizing the need to cross neurovascular structures when coming from a transnasal route. 10 Thus, a thorough understanding of the numerous anatomic relationships is crucial for the surgeon to determine the safest and most effective way of accessing lesions of the ventral skull base. Knowledge of anatomy allows one to minimize morbidity, maximize patient safety, and contribute to the progress of the surgeon throughout the learning curve of transnasal endoscopic surgery. 2


Anatomic surgical modules, based on their relation to the internal carotid artery (ICA) in the sagittal and coronal planes, provide access to the entire ventral skull base (▶Table 1.1). 6 , 7 , 9 The sphenoid sinus is the center at the intersection of these planes and is the starting point for most approaches, in which significant structures such as optic nerves and ICA are identified and then followed through other areas of the skull base. 11 Moreover, a number of additional “doors” can be used to get access to several regions of the skull base, including the frontal sinus, nasoethmoidal complex, maxillary sinus, nasopharynx, orbital walls, and pterygoid process. Sagittal plane modules provide exposure of median structures extending from the posterior plate of frontal sinus to C2 between the two orbits and ICAs. 9 , 12 , 13 These consist of transfrontal, transcribriform, transplanum–transtuberculum, transsellar, transclival, and transodontoid approaches. 11 Coronal plane modules comprise the paramedian and lateral skull base, covering areas adjacent or lateral to the ICA. Three progressively deep planes are considered to further classify coronal plane modules. The anterior one corresponds to the anterior cranial fossa and orbits, including approaches to the lamina papyracea, orbital roof, and orbital cavity. The middle one is in relation to the parasellar area, middle cranial fossa, and anterior infracranial spaces, extending from the lateral wall of sphenoid sinus and posterior nasal cavity to the cavernous sinus, superior petrous apex, Meckel’s cave, and pterygopalatine and infratemporal fossa. The posterior one corresponds to the posterior fossa and posterior infracranial spaces, providing access to the inferior petrous apex, lateral craniocervical junction, and upper parapharyngeal space. 9 , 11 , 13 All these modules are mutually related and partially overlapping. This atlas aims to provide a thorough and schematic knowledge of these modules, which can be variably combined and suited according to actual clinical needs.


The framework of the skull base and adjacent areas is essentially made of bony structures. As a consequence, anatomical orientation mostly relies on bony planes and landmarks, with subperiosteal dissection being probably one of the key abilities to move within this exceedingly complex area. Moreover, some neurovascular structures pass across different modules in a relatively constant fashion, thus serving as valuable guides to get oriented and judiciously pursue dissection. 10 , 13 The complexity and numerosity of structures forming the skull base and adjacent areas force the surgeon to simplify an extraordinarily intricate geometry into a reliable schematization. Overall, the mental map of skull base anatomy should be built up based on the reciprocal relationships of key structures, namely defined anatomical landmarks (▶Table 1.2, ▶Table 1.3).


Finally, it is worth remembering that each module is associated with idiosyncratic lesions. This concept is of utmost importance when considering that the nature of the lesion substantially dictates the type of resection that is required. Therefore, tumor characteristics should affect the choice of a specific surgical route along with patient comorbidities, general status, and skill and experience of the operating team. Indeed, each case should be evaluated thoroughly, balancing the purpose to be elegant and minimally invasive with the probability of complications. 1 , 5 7


The following figures summarize the anatomical structures of skull base and adjacent areas while mapping the approaches described in the atlas on the sagittal.






































































Table 1.1 Overview of sagittal and coronal endoscopic transnasal approaches to the skull base and adjacent areas

Plane


Approach


Sagittal


Transfrontal (Chapter 6)


Transcribriform (Chapter 7)


Transplanum–transtuberculum (Chapter 8)


Transsellar (Chapter 9)


Transclival


Upper clivus (transdorsal) (Chapters 10 and 11)


Middle clivus (midclivus) (Chapter 11)


Lower clivus (Chapter 12)


Transodontoid (Chapter 13)


Coronal


Anterior


Orbital decompression (Chapter 14)


Supraorbital (Chapter 14)


Transorbital (Chapter 14)


Middle


Transcavernous


Medial (Chapter 17)


Lateral (Chapter 18)


Optic decompression (Chapter 14)


Medial petrous apex (Chapter 19)


Transpterygomaxillary (Chapter 15)


Infratemporal fossa (Chapter 16)


Transpterygoid


Upper (Chapter 21)


Lower (Chapter 23)


Suprapetrous (Meckel’s cave) and transalisphenoid (Chapter 21)


Posterior


Infrapetrous (Chapter 20)


Transcondylar–transjugular tuberculum (Chapter 22)


Parapharyngeal space


Medial (Chapter 23)


Lateral (Chapter 24)



























































































Table 1.2 Main characteristics of endoscopic transnasal sagittal approaches to the skull base and adjacent areas

Approach


Anatomical boundaries


Key anatomical landmarks


Critical structures


Target(s)


Limitations


Common pathologies


Transfrontal




  • Nasal bones anteriorly



  • Nasal septum and cribriform plate posteriorly



  • Orbital cavities bilaterally




  • First olfactory phyla



  • Crista galli




  • Superior sagittal sinus



  • Medial orbitofrontal and frontopolar vessels



  • Bridge veins




  • Posterior wall of frontal sinus




  • Far-lateral extension (beyond the orbital sagittal midplane)



  • Involvement of the anterior frontal plate




  • Intracranial complications of rhinosinusitis (epidural abscess and subdural empyema) 14



  • Mucocele/mucopyocele 15



  • Tumors (fibro-osseous tumors and inverted papilloma) 16 , 17



  • Dermoid cyst and other nasofrontal dysembryogenic lesions 18 , 19



  • CSF leaks 20 , 21


Transcribriform




  • Posterior wall of frontal sinus anteriorly



  • Planum sphenoidale posteriorly



  • Lamina papyracea bilaterally




  • Ethmoidal arteries



  • Crista galli



  • Falx cerebri



  • Periorbit




  • Medial orbitofrontal vessels



  • Anterior cerebral arteries



  • Superior sagittal sinus



  • Gyrus rectus



  • Medial orbitofrontal gyrus




  • Midline anterior skull base above the nasoethmoidal complex




  • Far-lateral extension (beyond the orbital sagittal midplane)



  • Massive cranial extension



  • Extension to the suprasellar area



  • Extension to nasal bones and face soft tissues



Transplanum–transtuberculum




  • Fovea ethmoidalis and cribriform plate anteriorly



  • Sella turcica posteriorly



  • Optic canals and paraclinoid and intracranial ICAs bilaterally




  • Medial opticcarotid recesses



  • Optic canals



  • Posterior clinoid processes




  • Circle of Willis



  • Paraclinoid and intracranial ICAs



  • Optic nerves



  • Optic chiasm



  • Optic tracts



  • Pituitary stalk



  • Superior hypophyseal arteries



  • Gyrus rectus



  • Medial orbitofrontal gyrus




  • Midline anterior skull base above the sphenoid sinus



  • Suprasellar area



  • Third ventricle




  • Extension lateral to ICAs



  • Extension lateral to optic nerves



Transsellar




  • Anterior superior intercavernous sinus superiorly



  • Anterior inferior intercavernous sinus inferiorly



  • Cavernous sinuses bilaterally




  • Tuberculum sellae



  • Lateral and medial optic-carotid recesses



  • Carotid prominences



  • Sellar floor



  • “Four blues” (anterior superior intercavernous, anterior inferior intercavernous, and cavernous sinuses)




  • Parasellar and paraclinoid ICAs



  • Pituitary gland



  • Optic chiasm




  • Sella turcica




  • Extension lateral to ICA



  • Extension posterior to dorsum sellae



  • Suprasellar extension




  • Pituitary adenomas/apoplexy 6 , 42



  • Rathke’s cleft cysts 43 , 44



  • Craniopharyngiomas 45



  • Arachnoid cysts 46


Transclival


Transdorsal




  • Cavernous sinus bilaterally



  • Midclivus inferiorly



  • Suprasellar area superiorly




  • Sellar floor



  • Dorsum sellae



  • Posterior clinoid process



  • Parasellar ICA




  • Oculomotor nerve



  • Parasellar and paraclinoid ICAs



  • Pituitary gland and stalk



  • Basilar artery and its branches



  • Mesencephalon and pons




  • Upper clivus



  • Inter- and parapeduncular space (retroclival area)




  • Extension lateral to ICA



  • Extension lateral to the oculomotor nerve



  • Suprasellar extension



  • Inferior prepontine extension



Midclivus




  • Sellar floor superiorly



  • Paraclival ICAs bilaterally



  • Plane of the vidian nerves inferiorly




  • Vidian nerves



  • Fibrocartilago basalis




  • Abducens nerve



  • Paraclival ICAs



  • Basilar artery and its branches



  • Pons




  • Midclivus



  • Prepontine space




  • Extension lateral to ICA



  • Extension lateral to abducens nerve



  • Superior prepontine interpeduncular extension



  • Premedullary extension



Lower clivus




  • Plane of the vidian nerves superiorly



  • Hypoglossal canals bilaterally



  • Foramen magnum inferiorly




  • Basion



  • Jugular tubercula



  • Occipital condyles



  • Hypoglossal canals




  • Abducens nerve



  • Hypoglossal nerve



  • Vertebral arteries and their branches



  • Medulla oblongata




  • Lower clivus



  • Superior premedullary space




  • Extension lateral to hypoglossal nerves



  • Superior prepontine extension



  • Extension to the craniocervical junction or inferior premedullary space



Transodontoid

 


  • Basion superiorly



  • Superior border of the axis body inferiorly



  • Occipital condyles and lateral masses of the atlas bilaterally




  • Lower clivus



  • Basion



  • Anterior arch of the atlas



  • Odontoid process




  • Vertebral arteries



  • First and second cervical nerves



  • Suboccipital cavernous sinuses




  • Craniocervical junction



  • Inferior premedullary space




  • Inferior extension to the body of the axis



  • Lateral extension to occipital condyles or lateral masses of the atlas



  • Superior premedullary extension




  • Inflammatory pannus 56



  • Craniovertebral invagination 56



  • Chordomas 57


Abbreviations: CSF, cerebrospinal fluid; ICA, internal carotid artery.





















































































































Table 1.3 Main characteristics of endoscopic transnasal coronal approaches to the skull base and adjacent areas

Approach


Anatomical boundary


Key anatomical landmark


Critical structures


Limitations


Common pathologies


Anterior




  • Orbital decompression



  • Supraorbital



  • Transorbital




  • Orbital roof and related dura superiorly



  • Orbital floor inferiorly



  • Lacrimal system and eyeball anteriorly



  • Orbital apex posteriorly




  • Lamina papyracea



  • Ethmoidal arteries



  • Superior oblique, medial rectus, and inferior rectus muscles




  • Optic nerve



  • Ophthalmic artery



  • Extrinsic ocular muscles and their nerve supply




  • Lateral and/or superior extension with respect to the optic nerve and ophthalmic artery



  • Extension to lacrimal system



  • Preseptal extension



  • Extension to orbital apex



Middle


Medial transcavernous




  • Sella turcica medially



  • Parasellar ICA laterally



  • Petroclival junction inferiorly



  • Posterior clinoid process and oculomotor triangle posteriorly and superiorly (of note, the corridor can be extended posteriorly and superiorly via interdural hypophysiopexy 62 and transoculomotor approach) 63




  • Medial optic-carotid recess



  • Carotid prominence



  • Pituitary ligaments



  • Medial wall of the cavernous sinus



  • Posterior clinoid process



  • Oculomotor triangle




  • Parasellar ICA



  • Meningohypophyseal trunk



  • Oculomotor nerve



  • Abducens nerve




  • Extension to the lateral and posterior compartments of the cavernous sinus



  • Extension to the sella turcica



Lateral transcavernous




  • Parasellar and paraclival ICA medially



  • Meckel’s cave and dura of the middle cranial fossa laterally



  • Anterior clinoid process and roof of the cavernous sinus superiorly



  • Petrolingual ligament inferiorly




  • Lateral optic-carotid recess



  • Carotid prominence



  • Carotid sulcus



  • Maxillary strut




  • Parasellar and paraclival ICA



  • Oculomotor nerve



  • Trochlear nerve



  • Abducens nerve



  • Ophthalmic nerve



  • Maxillary nerve



  • Inferolateral trunk




  • Lateral extension to the Meckel’s cave



  • Extension to the superior compartment of the cavernous sinus



  • Extension to the petrous apex



Optic decompression




  • Medial optic-carotid recess and tuberculum sellae posteromedially



  • Lateral optic-carotid recess inferiorly



  • Planum sphenoidale superiorly



  • Lamina papyracea anterolaterally




  • Medial optic-carotid recess



  • Lateral optic-carotid recess



  • Annulus of Zinn




  • Optic nerve



  • Ophthalmic artery



  • Paraclinoid ICA



  • Extrinsic ocular muscles




  • Extension to the orbital cavity



  • Extension lateral and/or superior to the optic nerve



  • Extension to cavernous sinus/suprasellar space




  • Traumatic optic neuropathy 69



  • Nontraumatic optic neuropathy 70


Medial petrous apex




  • Midclivus medially



  • Paraclival ICA anterolaterally



  • Abducens nerve superiorly




  • Vidian canal and vidian nerve



  • Carotid sulcus



  • Fibrocartilago basalis




  • Paraclival ICA



  • Abducens nerve




  • Extension to the inferior petrous apex or lateral portion of the superior petrous apex (lateral to the abducens nerve)



  • Extension to cavernous sinus



Transpterygomaxillary




  • Tails of turbinates medially



  • Pterygomaxillary fissure laterally



  • Inferior orbital fissure superiorly



  • Pterygomaxillary junction inferiorly




  • Posterior maxillary wall



  • Infraorbital canal



  • Sphenopalatine foramen



  • Pterygoid process



  • Pterygomaxillary junction




  • Internal maxillary artery and its branches



  • Maxillary nerve




  • Lateral extension to the infratemporal fossa



  • Superior extension to the orbital cavity



  • Posterior and/or inferior extension to the masticatory space



Infratemporal fossa




  • Lateral pterygoid plate posteromedially



  • Orbital floor superiorly



  • Alveolar process inferiorly



  • Coronoid process anterolaterally




  • Infraorbital canal



  • Zygomatic recess



  • Coronoid process



  • Lateral pterygoid muscle



  • Temporal muscle




  • Internal maxillary artery and its branches



  • Mandibular nerve




  • Extension to the temporal fossa



  • Extension to the buccal space



  • Extension to the parapharyngeal space



  • Extension to the adjacent skull base



Transpterygoid


Upper transpterygoid




  • Greater wing of the sphenoid bone laterally



  • Sphenoid floor medially



  • Superior orbital fissure superiorly



  • Scaphoid fossa inferiorly Lower transpterygoid



  • Base of the pterygoid process superiorly



  • Lateral pterygoid muscle laterally



  • Pterygomaxillary junction inferiorly



  • Nasopharynx medially




  • Descending palatine canal



  • Vidian nerve and vidian canal



  • Foramen rotundum



  • Fibrocartilago basalis



  • Medial and lateral pterygoid plate



  • Foramen ovale



  • Pterygomaxillary junction




  • Anterior genu of the internal carotid artery (between the petrous and paraclival tract)



  • Pterygoid, pharyngeal, and foraminal plexuses



  • Maxillary nerve




  • Depending on the targeted area (see column “Common pathologies”)




  • The transpterygoid approach is propaedeutic to other approaches (i.e., suprapetrous, infrapetrous, and parapharyngeal) that are characterized by idiosyncratic lesions




  • Suprapetrous (Meckel’s cave)



  • Transalisphenoid




  • Abducens nerve superiorly



  • Paraclival ICA and petrolingual ligament medially



  • Gasserian ganglion and dura of the middle cranial fossa laterally



  • Petrous ICA inferiorly




  • Vidian nerve



  • Foramen rotundum



  • Maxillary strut



  • Lingual process of the sphenoid and petrolingual ligament



  • Mandibular strut




  • Paraclival and petrous ICA



  • Abducens nerve



  • Gasserian ganglion and trigeminal branches




  • Extension to the cavernous sinus



  • Extension to the inferior petrous apex or medial portion of the superior petrous apex



  • Extension to infratemporal fossa



  • Far-lateral extension into the middle cranial fossa




  • Schwannomas 84



  • Meningiomas 84



  • Malignant tumors (nasopharyngeal carcinoma and minor salivary gland carcinomas) 84


Posterior


Infrapetrous




  • Petrous ICA superiorly and laterally



  • Jugular tuberculum and hypoglossal canal inferiorly



  • Lower clivus medially




  • Medial pterygoid plate



  • Vidian canal



  • Fibrocartilago basalis



  • Hypoglossal canal




  • Petrous ICA



  • Hypoglossal nerve




  • Extension to the posteroinferior petrous apex or superior petrous apex



  • Extension to the clivus



  • Extension to occipital condyle



Transcondylar–transjugular tuberculum (far-medial)




  • Lower clivus medially



  • Carotid canal and jugular foramen laterally



  • Craniocervical junction inferiorly



  • Inferior petrosal sinus superiorly




  • Anterior rectus capitis muscle



  • Jugular tuberculum



  • Hypoglossal canal



  • Occipital condyle




  • Vertebral artery



  • Hypoglossal nerve



  • Glossopharyngeal, vagus, and accessory nerve



  • Acoustic-facial bundle



  • Inferior petrosal sinus




  • Extension to the petrous apex



  • Extension to the vascular compartment of the jugular foramen



  • Extension to parapharyngeal space



  • Extension to the atlas



Medial parapharyngeal space




  • Nasopharynx medially



  • Base of the pterygoid process and fibrocartilago basalis superiorly



  • Lateral pterygoid plate laterally



  • Axial plane passing through the pterygomaxillary junction inferiorly




  • Medial pterygoid plate



  • Eustachian tube



  • Tensor veli palatini muscle



  • Levator veli palatini muscle



  • Lateral pterygoid plate




  • Parapharyngeal ICA




  • Extension to adjacent skull base



  • Extension to infratemporal fossa



  • Extension to the jugular foramen



  • Extension to middle parapharyngeal space




  • Malignant nasopharyngeal tumors (nasopharyngeal carcinomas, minor salivary gland carcinomas, and sarcomas) 80 , 90


Lateral parapharyngeal space




  • Nasopharynx medially



  • Base of the pterygoid process and fibrocartilago basalis superiorly



  • Lateral pterygoid muscle laterally



  • Axial plane passing through the pterygomaxillary junction inferiorly




  • Lateral pterygoid plate



  • Foramen ovale



  • Foramen spinosum



  • Tensor veli palatini muscle



  • Levator veli palatini muscle




  • Parapharyngeal ICA



  • Internal jugular vein



  • Glossopharyngeal nerve



  • Vagus nerve



  • Spinal accessory nerve



  • Hypoglossal nerve




  • Extension to adjacent skull base



  • Extension to infratemporal fossa



  • Extension to middle parapharyngeal space




  • Malignant nasopharyngeal tumors (nasopharyngeal carcinomas, minor salivary gland carcinomas, and sarcomas) 80 , 90


Abbreviation: ICA, internal carotid artery.

Fig. 1.1 Sagittal view of the skull base and adjacent areas (part 1). Medial-to-lateral view of the right side (upper image) and lateral-to-medial view of the left side (lower image). A1, precommunicating tract of the anterior cerebral artery; AE, anterior ethmoidal compartment; AICA, anterior inferior cerebellar artery; Ar, anterior arch of the atlas; AWSS, anterior wall of the sphenoid sinus; BA, basilar artery; BLMT, basal lamella of the middle turbinate; BLST, basal lamella of the superior turbinate; C2, axis (body); C3, third cervical vertebra (body); CPe, cerebral peduncle; CrP, cribriform plate; DoS, dorsum sellae; EB, ethmoidal bulla; FoE, fovea ethmoidalis; FPA, frontopolar artery; FPMB, frontal process of the maxillary bone; FS, frontal sinus; GR, gyrus rectus; Hyp, hypophysis (pituitary gland); IT, inferior turbinate; JuT, jugular tuberculum; LoC, lower clivus; LoCM, longus capitis muscle; MC, midclivus; MOG, medial orbital gyrus; MOb, medulla oblongata; MT, middle turbinate; NaF, nasal floor; NB, nasal bone; OBu, olfactory bulb; OCo, occipital condyle; ON, optic nerve; OP, odontoid process; OTr, optic tract; P1, precommunicating tract of the posterior cerebral artery; PE, posterior ethmoidal compartment; PICA, posterior inferior cerebellar artery; Po, pons; PPFS, posterior plate of the frontal sinus; PSph, planum sphenoidale; SCA, superior cerebellar artery; SER, sphenoethmoidal recess; SoP, soft palate; SpF, sphenoidal floor; SPr, sellar prominence; SpS, sphenoid sinus; ST, superior turbinate; ToT, torus tubarius; TSe, tuberculum sellae; UP, uncinate process; VA, vertebral artery; Vo, vomer.
Fig. 1.2 Mapping of endoscopic transnasal approaches on a sagittal section (part 1). Medial-to-medial view of the right side (upper image) and lateral-to-medial view of the left side (lower image). TC, transcribriform approach; TCJ, transcondylar–transjugular tuberculum approach; TD, transdorsal approach; TF, transfrontal approach; TLC, transclival (lower clivus) approach; TMC, transclival (midclivus) approach; TO, transodontoid approach; TPT, transplanum–transtuberculum approach; TS, transsellar approach.
Fig. 1.3 Sagittal view of the skull base and adjacent areas (part 2). Medial-to-lateral view of the right side (both images). V, trigeminal stem; V3, mandibular nerve; XII, hypoglossal nerve; A1, precommunicating tract of the anterior cerebral artery; AE, anterior ethmoidal complex; AIPA, anterior inferior petrous apex; AMOs, accessory maxillary ostium; ARCM, anterior rectus capitis muscle; BaP, basilar plexus; CPr, carotid prominence; CS, cavernous sinus; CSu, carotid sulcus; EB, ethmoidal bulla; EFa, extraconal fat; ET, eustachian tube; Ey, eyeball; FoE, fovea ethmoidalis; FS, frontal sinus; GW, greater wing of the sphenoid bone; IFa, intraconal fat; iICA, intracranial tract of the internal carotid artery; IMA, internal maxillary artery; ION, infraorbital nerve; IRM, inferior rectus muscle; IT, inferior turbinate; JF, jugular foramen; JuT, jugular tuberculum; LMAt, lateral mass of the atlas; LMAx, lateral mass of the axis; LoC, lower clivus; LoCM, longus capitis muscle; LOG, lateral orbital gyrus; LPM, lateral pterygoid muscle; LS, lacrimal sac; MCA, middle cerebral artery; MOG, medial orbital gyrus; MPM, medial pterygoid muscle; MRM, medial rectus muscle; MS, maxillary sinus; MT, middle turbinate; OC, optic canal; OCo, occipital condyle; ON, optic nerve; OpA, ophthalmic artery; OR, orbital roof; P2, postcommunicating tract of the posterior cerebral artery; pcICA, paraclinoid tract of the internal carotid artery; PE, posterior ethmoidal complex; peICA, petrous tract of the internal carotid artery; phICA, parapharyngeal tract of the internal carotid artery; PhO, pharyngeal ostium of the eustachian tube; PMF, pterygomaxillary fissure; PPFS, posterior plate of the frontal sinus; PSph, planum sphenoidale; PWMS, posterior wall of the maxillary sinus; sICA, parasellar tract of the internal carotid artery; SpS, sphenoid sinus; SRM, superior rectus muscle; SuPA, superior petrous apex; TL, temporal lobe; TPAt, transverse process of the atlas; UP, uncinate process; VA, vertebral artery; ZR, zygomatic recess.
Fig. 1.4 Mapping of endoscopic transnasal approaches on a sagittal section (part 2). Medial-to-lateral view of the right side (both images). IP, infrapetrous approach; ITF, infratemporal fossa approach; LPPh, lateral parapharyngeal space approach; LTC, lateral transcavernous approach; MPA, medial petrous apex approach; MPPh, medial parapharyngeal space approach; MTC, medial transcavernous approach; OD, orbital decompression; OpD, optic decompression; SO, supraorbital approach; SP, suprapetrous (Meckel’s cave) approach; TA, transalisphenoid approach; TC, transcribriform approach; TCJ, transcondylar–transjugular tuberculum approach; TOr, transorbital approach; TPM, transpterygomaxillary approach; TPT, transplanum–transtuberculum approach.
Fig. 1.5 Coronal view of the skull base and adjacent areas (part 1). Anterior-to-posterior view (both images). AE, anterior ethmoidal compartment; AEA, anterior ethmoidal artery; ANC, agger nasi cell; CrP, cribriform plate; EFa, extraconal fat; Ey, eyeball; FaC, falx cerebri; FoE, fovea ethmoidalis; FS, frontal sinus; FSC, frontal septal cell; GR, gyrus rectus; h, horizontal lamella of the cribriform plate; IFa, intraconal fat; IOCa, infraorbital canal; IOF, inferior orbital fissure; IOM, inferior oblique muscle; IRM, inferior rectus muscle; IT, inferior turbinate; ITF, infratemporal fossa; LMW, lateral maxillary wall; LP, lamina papyracea; LRM, lateral rectus muscle; LS, lacrimal sac; MMW, medial maxillary wall; MOFA, medial orbitofrontal artery; MOG, medial orbital gyrus; MRM, medial rectus muscle; MS, maxillary sinus; MT, middle turbinate; NLD, nasolacrimal duct; NS, nasal septum; OBu, olfactory bulb; OFi, olfactory fissure (or cleft); ON, optic nerve; OrF, orbital floor; PE, posterior ethmoidal compartment; SAC, supra-agger cell; SAFC, supra-agger frontal cell; SOM, superior oblique muscle; SOpV, superior ophthalmic vein; SRM, superior rectus muscle; ST, superior turbinate; TM, temporal muscle; v, vertical lamella of the cribriform plate; ZR, zygomatic recess.
Fig. 1.6 Mapping of endoscopic transnasal approaches on a coronal section (part 1). Anterior-to-posterior view (both images). ITF, infratemporal fossa approach; OD, orbital decompression; SO, supraorbital approach; TC, transcribriform approach; TF, transfrontal approach; TOr, transorbital approach; TPM, transpterygomaxillary approach.
Fig. 1.7 Coronal view of the skull base and adjacent areas (part 2). Anterior-to-posterior view (both images). III, oculomotor nerve; IV, trochlear nerve; VI, abducens nerve; V1, ophthalmic nerve; V2, maxillary nerve; V3, mandibular nerve; A2, postcommunicating tract of the anterior cerebral artery; ACP, anterior clinoid process; ArD, articular disk (temporomandibular joint); ArtT, articular tuberculum; ASIS, anterior superior intercavernous sinus; BP, base of the pterygoid process (or basipterygoid); ConP, condylar process of the mandible; ET, eustachian tube; FoPl, foraminal plexus; GW, greater wing of the sphenoid bone; iICA, intracranial tract of the internal carotid artery; IJV, internal jugular vein; IMA, internal maxillary artery; LoC, lower clivus; LoCM, longus capitis muscle; LPM, lateral pterygoid plexus; LVPM, levator veli palatini muscle; MMA, middle meningeal artery; MPM, medial pterygoid plexus; NaP, nasopharyngeal posterior wall; ON, optic nerve; OpA, ophthalmic artery; OSt, optic strut; pcICA, paraclinoid tract of the internal carotid artery; PG, parotid gland; phICA, parapharyngeal tract of the internal carotid artery; PhPl, pharyngeal plexus; PSph, planum sphenoidale; PtPl, pterygoid plexus; sICA, parasellar tract of the internal carotid artery; SOF, superior orbital fissure; SOpV, superior ophthalmic vein; SpF, sphenoidal floor; SpS, sphenoid sinus; StyP, styloid process; TSe, tuberculum sellae; TVPM, tensor veli palatini muscle; VN, vidian nerve.
Fig. 1.8 Mapping of endoscopic transnasal approaches on a coronal section (part 2). Anterior-to-posterior view (both images). IP, infrapetrous approach; LPPh, lateral parapharyngeal space approach; LTC, lateral transcavernous approach; MPA, medial petrous apex approach; MPPh, medial parapharyngeal space approach; MTC, medial transcavernous approach; OpD, optic decompression; SP, suprapetrous (Meckel’s cave) approach; TA, transalisphenoid approach; TD, transdorsal approach; TLC, transclival (lower clivus) approach; TMC, transclival (middle clivus) approach; TPT, transplanum–transtuberculum approach; TO, transodontoid approach; TS, transsellar approach.
Fig. 1.9 Coronal view of the skull base and adjacent areas (part 3). Posterior-to-anterior view (upper image) and anterior-to-posterior view (lower image). III, oculomotor nerve; IX, glossopharyngeal nerve; X, vagus nerve; XI, spinal accessory nerve; XII, hypoglossal nerve; A2, postcommunicating tract of the anterior cerebral artery; AAOM, anterior atlanto-occipital membrane; AIPA, anterior inferior petrous apex; Ar, anterior arch of the atlas; ARCM, anterior rectus capitis muscle; ArD, articular disk (temporomandibular joint); ArtT, articular tuberculum; C2, axis (body); CS, cavernous sinus; EAC, external auditory canal; GG, gasserian ganglion; h, horizontal portion of the petrous tract of the internal carotid artery; Hyp, hypophysis; iICA, intracranial tract of the internal carotid artery; IJV, internal jugular vein; JF, jugular foramen; LMAt, lateral mass of the atlas; LMAx, lateral mass of the axis; LoC, lower clivus; MC, midclivus; MCA, middle cerebral artery; ME, middle ear; MeC, Meckel’s cave; OCh, optic chiasm; OP, odontoid process; OTr, optic tract; PCJ, petroclival junction; PCP, posterior clinoid process; peICA, petrous tract of the internal carotid artery; PG, parotid gland; phICA, parapharyngeal tract of the internal carotid artery; pICA, paraclival tract of the internal carotid artery; PLLi, petrolingual ligament; PSt, pituitary stalk; SpS, sphenoid sinus; StyP, styloid process; SuPA, superior petrous apex; TPAt, transverse process of the atlas; v, vertical portion of the petrous tract of the internal carotid artery; VA, vertebral artery.
Fig. 1.10 Mapping of endoscopic transnasal approaches on a coronal section (part 3). Posterior-to-anterior view (upper image) and anterior-to-posterior view (lower image). IP, infrapetrous approach; LTC, lateral transcavernous approach; MPA, medial petrous apex approach; MTC, medial transcavernous approach; SP, suprapetrous approach; TCJ, transcondylar–transjugular tuberculum approach; TD, transdorsal approach; TLC, transclival (lower clivus) approach; TMC, transclival (midclivus) approach; TO, transodontoid approach; TPT, transplanum–transtuberculum approach; TS, transsellar approach.
Fig. 1.11 Axial view of the skull base and adjacent areas (part 1). Inferior-to-superior view (upper image) and superior-to-inferior view (lower image). VI, abducens nerve; A1, precommunicating tract of the anterior cerebral artery; ACP, anterior clinoid process; AE, anterior ethmoidal compartment; CGa, crista galli; ChoP, conchal plate; EFa, extraconal fat; Ey, eyeball; FaC, falx cerebri; FS, frontal sinus; GR, gyrus rectus; IFa, intraconal fat; iICA, intracranial tract of the internal carotid artery; LRM, lateral rectus muscle; MCA, middle cerebral artery; MOG, medial orbital gyrus; MRM, medial rectus muscle; NS, nasal septum; OCh, optic chiasm; OFi, olfactory fissure; ON, optic nerve; OpA, ophthalmic artery; OSt, optic strut; OTr, optic tract; PE, posterior ethmoidal compartment; PPFS, posterior plate of the frontal sinus; SON, supraorbital nerve; SOpV, superior ophthalmic vein; SpS, sphenoid sinus; STN, supratrochlear nerve.
Fig. 1.12 Mapping of endoscopic transnasal approaches on an axial section (part 1). Inferior-to-superior view (upper image) and superior-to-inferior view (lower image). OD, orbital decompression; OpD, optic decompression; SO, supraorbital approach; TC, transcribriform approach; TF, transfrontal approach; TOr, transorbital approach; TPT, transplanum–transtuberculum approach.
Fig. 1.13 Axial view of the skull base and adjacent areas (part 2). Superior-to-inferior view (both images). III, oculomotor nerve; V2, maxillary nerve; AE, anterior ethmoidal artery; AMW, anterior maxillary wall; ASIS, anterior superior intercavernous sinus; BA, basilar artery; BaP, basilar plexus; BP, base of the pterygoid process; CPr, carotid prominence; CS, cavernous sinus; EFa, extraconal fat; Ey, eyeball; GG, gasserian ganglion; GW, greater wing of the sphenoid sinus; ION, infraorbital nerve; IRM, inferior rectus muscle; IT, inferior turbinate; ITF, infratemporal fossa; LMW, lateral maxillary wall; LP, lamina papyracea; LR, lateral recess of the sphenoid bone; MC, midclivus; MeC, Meckel’s cave; Mes, mesencephalon; MMA, middle meningeal artery; MMW, medial maxillary wall; MS, maxillary sinus; MT, middle turbinate; NLD, nasolacrimal duct; NS, nasal septum; P2, postcommunicating tract of the posterior cerebral artery; PCJ, petroclival junction; PE, posterior ethmoidal compartment; pICA, paraclival tract of the internal carotid artery; Po, pons; PPF, pterygopalatine fossa; PSIS, posterior superior intercavernous sinus; PWMS, posterior wall of the maxillary sinus; SCA, superior cerebellar artery; SER, sphenoethmoidal recess; sICA, parasellar tract of the internal carotid artery; SOpV, superior ophthalmic vein; SPA, sphenopalatine artery; SPr, sellar prominence; SpS, sphenoid sinus; ST, superior turbinate; SuPA, superior petrous apex; Te, tentorium cerebri; VC, vidian canal; ZR, zygomatic recess of the maxillary sinus.
Fig. 1.14 Mapping of endoscopic transnasal approaches on an axial section (part 2). Superior-to-inferior view (both images). ITF, infratemporal fossa approach; LTC, lateral transcavernous approach; MPA, medial petrous apex approach; MTC, medial transcavernous approach; OD, orbital decompression; SP, suprapetrous (Meckel’s cave) approach; TA, transalisphenoid approach; TC, transcribriform approach; TD, transdorsal approach; TMC, transclival (midclivus) approach; TOr, transorbital approach; TPM, transpterygomaxillary approach; TS, transsellar approach.
Fig. 1.15 Axial view of the skull base and adjacent areas (part 3). Superior-to-inferior view (both images). V3, mandibular nerve; AIPA, anterior inferior petrous apex; AMW, anterior maxillary wall; BA, basilar artery; BaP, basilar plexus; BP, base of the pterygoid process; Co, cochlea; ConP, condylar process of the mandible; ET, eustachian tube; FoPl, foraminal plexus; GW, greater wing of the sphenoid bone; h, horizontal portion of the petrous tract of the internal carotid artery; IAC, internal auditory canal; IMA, internal maxillary artery; IPS, inferior petrosal sinus; IT, inferior turbinate; ITF, infratemporal fossa; JuT, jugular tuberculum; LoC, lower clivus; LMW, lateral maxillary wall; LPM, lateral pterygoid muscle; ME, middle ear; MMA, middle meningeal artery; MMW, medial maxillary wall; NaP, nasopharyngeal posterior wall; NS, nasal septum; PCJ, petroclival junction; peICA, petrous tract of the internal carotid artery; Po, pons; PPF, pterygopalatine fossa; PtPl, pterygoid plexus; PWMS, posterior wall of the maxillary sinus; TM, temporal muscle; v, vertical portion of the petrous tract of the internal carotid artery; ZR, zygomatic recess.
Fig. 1.16 Mapping of endoscopic transnasal approaches on an axial section (part 3). Superior-to-inferior view (both images). IP, infrapetrous approach; ITF, infratemporal fossa approach; LPPh, lateral parapharyngeal space approach; LTP, lower transpterygoid approach; MPPh, medial parapharyngeal space approach; TA, transalisphenoid approach; TCJ, transcondylar–transjugular tuberculum approach; TLC, transclival (lower clivus) approach; TPM, transpterygomaxillary approach; UTP, upper transpterygoid approach.
Fig. 1.17 Axial view of the skull base and adjacent areas (part 4). Superior-to-inferior view (both images). V3, mandibular nerve; X, vagus nerve; X*, glossopharyngeal, vagus, and accessory nerve; XI, spinal accessory nerve; XII, hypoglossal nerve; AMW, anterior maxillary wall; APA, ascending pharyngeal artery; Ar, anterior arch of the atlas; AsPA, ascending palatine artery; CoP, coronoid process; EAC, external auditory canal; ECA, external carotid artery; ET, eustachian tube; IAN, inferior alveolar nerve; IMA, internal maxillary artery; IPS, inferior petrosal sinus; IT, inferior turbinate; ITF, infratemporal fossa; IJV, internal jugular vein; JuT, jugular tuberculum; LMAt, lateral mass of the atlas; LMW, lateral maxillary wall; LN, lingual nerve; LoC, lower clivus; LoCM, longus capitis muscle; LPM, lateral pterygoid muscle; LPP, lateral pterygoid plate; ME, middle ear; MM, masseteric muscle; MMA, middle meningeal artery; MMW, medial maxillary wall; MOb, medulla oblongata; MPM, medial pterygoid muscle; MPP, medial pterygoid plate; MS, maxillary sinus; NaF, nasal floor; NS, nasal septum; OP, odontoid process; PCV, petroclival vein; peICA, petrous tract of the internal carotid artery; PG, parotid gland; phICA, parapharyngeal tract of the internal carotid artery; PhPl, pharyngeal plexus; PICA, posterior inferior cerebellar artery; PIPA, posterior inferior petrous apex; PMJ, pterygomaxillary junction; PtPl, pterygoid plexus; SCo, spinal cord; SCS, suboccipital cavernous sinus; SoP, soft palate; StyP, styloid process; TM, temporal muscle; ToT, torus tubarius; v, vertical portion of the petrous tract of the internal carotid artery; VA, vertebral artery; ZR, zygomatic recess.
Fig. 1.18 Mapping of endoscopic transnasal approaches on an axial section (part 4). Superior-to-inferior view (both images). ITF, infratemporal fossa approach; LPPh, lateral parapharyngeal space approach; MPPh, medial parapharyngeal space approach; TCJ, transcondylar–transjugular tuberculum approach; TLC, transclival (lower clivus) approach; TO, transodontoid approach; TPM, transpterygomaxillary approach.


References

[1] Lund VJ, Stammberger H, Nicolai P, et al; European Rhinologic Society Advisory Board on Endoscopic Techniques in the Management of Nose, Paranasal Sinus and Skull Base Tumours. European position paper on endoscopic management of tumours of the nose, paranasal sinuses and skull base. Rhinol Suppl 2010;22:1–143 [2] Patel CR, Fernandez-Miranda JC, Wang WH, Wang EW. Skull base anatomy. Otolaryngol Clin North Am 2016;49(1):9–20 [3] Verillaud B, Bresson D, Sauvaget E, et al. Endoscopic endonasal skull base surgery. Eur Ann Otorhinolaryngol Head Neck Dis 2012;129(4):190–196 [4] Emmanuel J, Mahmoud M, Moncef B. Endoscopic endonasal skull base surgery: current state of the art and future trends. In: Iancu C, ed. Advances in Endoscopic Surgery. Rijeka: InTech; 2011:3–38 [5] Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R. Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus 2005;19(1):E6 [6] Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 2005;19(1):E3 [7] Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus 2005;19(1):E4 [8] Schwartz TH, Fraser JF, Brown S, Tabaee A, Kacker A, Anand VK. Endoscopic cranial base surgery: classification of operative approaches. Neurosurgery 2008;62(5):991–1002, discussion 1002–1005 [9] Kasemsiri P, Carrau RL, Ditzel Filho LF, et al. Advantages and limitations of endoscopic endonasal approaches to the skull base. World Neurosurg 2014;82(6, Suppl):S12–S21 [10] Prevedello DM, Kassam AB, Snyderman C, et al. Endoscopic cranial base surgery: ready for prime time? Clin Neurosurg 2007;54:48–57 [11] Snyderman CH, Carrau RL, Kassam AB, et al. Endoscopic skull base surgery: principles of endonasal oncological surgery. J Surg Oncol 2008;97(8):658–664 [12] Carrau RL, Kassam AB, Snyderman CH. Pituitary surgery. Otolaryngol Clin North Am 2001;34(6):1143–1155, ix [13] Kassam AB, Prevedello DM, Carrau RL, et al. Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg 2011;114(6):1544–1568 [14] Garin A, Thierry B, Leboulanger N, et al. Pediatric sinogenic epidural and subdural empyema: the role of endoscopic sinus surgery. Int J Pediatr Otorhinolaryngol 2015;79(10):1752–1760 [15] Cervantes SS, Lal D. Crista galli mucocele: endoscopic marsupialization via fron-toethmoid approach. Int Forum Allergy Rhinol 2014;4(7):598–602 [16] Selleck AM, Desai D, Thorp BD, Ebert CS, Zanation AM. Management of frontal sinus tumors. Otolaryngol Clin North Am 2016;49(4):1051–1065 [17] Thong JF, Chatterjee D, Hwang SY. Endoscopic modified Lothrop approach for the excision of bilateral frontal sinus tumors. Ear Nose Throat J 2014;93(3):116–119 [18] Pinheiro-Neto CD, Snyderman CH, Fernandez-Miranda J, Gardner PA. Endoscopic endonasal surgery for nasal dermoids. Otolaryngol Clin North Am 2011;44(4):981–987, ix [19] Re M, Tarchini P, Macrì G, Pasquini E. Endonasal endoscopic approach for intracranial nasal dermoid sinus cysts in children. Int J Pediatr Otorhinolaryngol 2012;76(8):1217–1222 [20] Ma J, Huang Q, Li X, et al. Endoscopic transnasal repair of cerebrospinal fluid leaks with and without an encephalocele in pediatric patients: from infants to children. Childs Nerv Syst 2015;31(9):1493–1498 [21] Nyquist GG, Anand VK, Mehra S, Kacker A, Schwartz TH. Endoscopic endonasal repair of anterior skull base non-traumatic cerebrospinal fluid leaks, meningoceles, and encephaloceles. J Neurosurg 2010;113(5):961–966 [22] Castelnuovo P, Battaglia P, Turri-Zanoni M, et al. Endoscopic endonasal surgery for malignancies of the anterior cranial base. World Neurosurg 2014;82(6, Suppl):S22–S31 [23] Nicolai P, Battaglia P, Bignami M, et al. Endoscopic surgery for malignant tumors of the sinonasal tract and adjacent skull base: a 10-year experience. Am J Rhinol 2008;22(3):308–316 [24] Nicolai P, Castelnuovo P, Bolzoni Villaret A. Endoscopic resection of sinonasal malignancies. Curr Oncol Rep 2011;13(2):138–144 [25] Fernandez-Miranda JC, Gardner PA, Prevedello DM, Kassam AB. Expanded endonasal approach for olfactory groove meningioma. Acta Neurochir (Wien) 2009;151(3):287–288, author reply 289–290 [26] Koutourousiou M, Fernandez-Miranda JC, Wang EW, Snyderman CH, Gardner PA. Endoscopic endonasal surgery for olfactory groove meningiomas: outcomes and limitations in 50 patients. Neurosurg Focus 2014;37(4):E8 [27] Verillaud B, Bresson D, Sauvaget E, et al. Transcribriform and transplanum endoscopic approach for skull-base tumors. Eur Ann Otorhinolaryngol Head Neck Dis 2013;130(4):233–236 [28] Liu JK, Eloy JA. Expanded endoscopic endonasal transcribriform approach for resection of anterior skull base olfactory schwannoma. J Neurosurg 2012;32(Suppl):E3 [29] Blake DM, Husain Q, Kanumuri VV, Svider PF, Eloy JA, Liu JK. Endoscopic endonasal resection of sinonasal and anterior skull base schwannomas. J Clin Neurosci 2014;21(8):1419–1423 [30] Vaz-Guimaraes F, Koutourousiou M, de Almeida JR, et al. Endoscopic endonasal surgery for epidermoid and dermoid cysts: a 10-year experience. J Neurosurg 2018 (e-pub ahead of print). doi:10.3171/2017.7.JNS162783 [31] Barazi SA, Pasquini E, D’Urso PI, et al. Extended endoscopic transplanum-transtuberculum approach for pituitary adenomas. Br J Neurosurg 2013;27(3):374–382 [32] Laufer I, Anand VK, Schwartz TH. Endoscopic, endonasal extended transsphenoidal, transplanum transtuberculum approach for resection of suprasellar lesions. J Neurosurg 2007;106(3):400–406 [33] Cavallo LM, Solari D, Esposito F, Villa A, Minniti G, Cappabianca P. The role of the endoscopic endonasal route in the management of craniopharyngiomas. World Neurosurg 2014;82(6, Suppl):S32–S40 [34] Fomichev D, Kalinin P, Kutin M, Sharipov O. Extended transsphenoidal endoscopic endonasal surgery of suprasellar craniopharyngiomas. World Neurosurg 2016;94:181–187 [35] Nishioka H, Fukuhara N, Yamaguchi-Okada M, Yamada S. Endoscopic endonasal surgery for purely intrathird ventricle craniopharyngioma. World Neurosurg 2016;91:266–271 [36] Liu JK, Christiano LD, Patel SK, Tubbs RS, Eloy JA. Surgical nuances for removal of tuberculum sellae meningiomas with optic canal involvement using the endoscopic endonasal extended transsphenoidal transplanum transtuberculum approach. Neurosurg Focus 2011;30(5):E2 [37] Froelich S, Cebula H, Debry C, Boyer P. Anterior communicating artery aneurysm clipped via an endoscopic endonasal approach: technical note. Neurosurgery 2011;68(2, Suppl Operative):310–316, discussion 315–316 [38] Xiao LM, Tang B, Xie SH, et al. Endoscopic endonasal clipping of anterior circulation aneurysm: surgical techniques and results. World Neurosurg 2018;115:e33–e44 [39] Kulwin C, Chan D, Ting J, Hattab EM, Cohen-Gadol AA. Endoscopic endonasal transplanum transtuberculum resection of a large solid choroid plexus papilloma of the third ventricle. J Clin Neurosci 2014;21(7):1263–1266 [40] Yoneoka Y, Yoshimura J, Sano M, Okada M, Kakita A, Fujii Y. Third ventricle germ cell tumor originating from the infundibulum with rapidly expansive enlargement. Pediatr Neurosurg 2018;53(1):49–54 [41] Zoli M, Mazzatenta D, Valluzzi A, et al. Expanding indications for the extended endoscopic endonasal approach to hypothalamic gliomas: preliminary report. Neurosurg Focus 2014;37(4):E11 [42] Cappabianca P, Cavallo LM, Solari D, Stagno V, Esposito F, de Angelis M. Endoscopic endonasal surgery for pituitary adenomas. World Neurosurg 2014;82(6, Suppl):S3–S11 [43] Ratha V, Patil S, Karmarkar VS, Shah NJ, Deopujari CE. Surgical management of Rathke cleft cysts. World Neurosurg 2017;107:276–284 [44] Zada G, Kelly DF, Cohan P, Wang C, Swerdloff R. Endonasal transsphenoidal approach for pituitary adenomas and other sellar lesions: an assessment of efficacy, safety, and patient impressions. J Neurosurg 2003;98(2):350–358 [45] Tang B, Xiao L, Xie S, et al. Extended endoscopic endonasal approach for recurrent or residual symptomatic craniopharyngiomas. Clin Neurol Neurosurg 2018;168:38–45 [46] Somma T, Solari D, Beer-Furlan A, et al. Endoscopic endonasal management of rare sellar lesions: clinical and surgical experience of 78 cases and review of the literature. World Neurosurg 2017;100:369–380 [47] Fernandez-Miranda JC, Gardner PA, Snyderman CH, et al. Clival chordomas: a pathological, surgical, and radiotherapeutic review. Head Neck 2014;36(6):892–906 [48] Fernandez-Miranda JC, Gardner PA, Snyderman CH, et al. Craniopharyngioma: a pathologic, clinical, and surgical review. Head Neck 2012;34(7):1036–1044 [49] Montaser AS, Revuelta Barbero JM, Todeschini A, et al. Endoscopic endonasal pituitary gland hemi-transposition for resection of a dorsum sellae meningioma. Neurosurg Focus 2017;43(VideoSuppl2):V7 [50] Gardner PA, Vaz-Guimaraes F, Jankowitz B, et al. Endoscopic endonasal clipping of intracranial aneurysms: surgical technique and results. World Neurosurg 2015;84(5):1380–1393 [51] Fraser JF, Nyquist GG, Moore N, Anand VK, Schwartz TH. Endoscopic endonasal transclival resection of chordomas: operative technique, clinical outcome, and review of the literature. J Neurosurg 2010;112(5):1061–1069 [52] Ditzel Filho LF, Prevedello DM, Dolci RL, et al. The endoscopic endonasal approach for removal of petroclival chondrosarcomas. Neurosurg Clin N Am 2015;26(3):453–462 [53] Vaz-Guimaraes F, Fernandez-Miranda JC, Koutourousiou M, et al. Endoscopic endonasal surgery for cranial base chondrosarcomas. Oper Neurosurg (Hagerstown) 2017;13(4):421–434 [54] Beer-Furlan A, Abi-Hachem R, Jamshidi AO, Carrau RL, Prevedello DM. Endoscopic trans-sphenoidal surgery for petroclival and clival meningiomas. J Neurosurg Sci 2016;60(4):495–502 [55] Kooshkabadi A, Choi PA, Koutourousiou M, et al. Atlanto-occipital instability following endoscopic endonasal approach for lower clival lesions: experience with 212 cases. Neurosurgery 2015;77(6):888–897, discussion 897 [56] Morales-Valero SF, Serchi E, Zoli M, Mazzatenta D, Van Gompel JJ. Endoscopic endonasal approach for craniovertebral junction pathology: a review of the literature. Neurosurg Focus 2015;38(4):E15 [57] Shkarubo AN, Andreev DN, Konovalov NA, et al. Surgical treatment of skull base tumors, extending to craniovertebral junction. World Neurosurg 2017;99:47–58 [58] Boboridis KG, Uddin J, Mikropoulos DG, et al. Critical appraisal on orbital decompression for thyroid eye disease: a systematic review and literature search. Adv Ther 2015;32(7):595–611 [59] Di Somma A, Cavallo LM, de Notaris M, et al. Endoscopic endonasal medial-to-lateral and transorbital lateral-to-medial optic nerve decompression: an anatomical study with surgical implications. J Neurosurg 2017;127(1):199–208 [60] Dallan I, Locatelli D, Turri-Zanoni M, et al. Transorbital endoscopic assisted resection of a superior orbital fissure cavernous haemangioma: a technical case report. Eur Arch Otorhinolaryngol 2015;272(12):3851–3856 [61] Kong DS, Young SM, Hong CK, et al. Clinical and ophthalmological outcome of endoscopic transorbital surgery for cranioorbital tumors. J Neurosurg 2018 (e-pub ahead of print). doi:10.3171/2018.3.JNS173233 [62] Fernandez-Miranda JC, Gardner PA, Rastelli MM Jr, et al. Endoscopic endonasal transcavernous posterior clinoidectomy with interdural pituitary transposition. J Neurosurg 2014;121(1):91–99 [63] Ferrareze Nunes C, Lieber S, Truong HQ, et al. Endoscopic endonasal transoculomotor triangle approach for adenomas invading the parapeduncular space: surgical anatomy, technical nuances, and case series. J Neurosurg 2018 [64] Cohen-Cohen S, Gardner PA, Alves-Belo JT, et al. The medial wall of the cavernous sinus. Part 2: selective medial wall resection in 50 pituitary adenoma patients. J Neurosurg 2018 (e-pub ahead of print). doi:10.3171/2018.5.JNS18595 [65] Toda M, Kosugi K, Ozawa H, Ogawa K, Yoshida K. Surgical treatment of cavernous sinus lesion in patients with nonfunctioning pituitary adenomas via the endoscopic endonasal approach. J Neurol Surg B Skull Base 2018;79(Suppl 4):S311–S315 [66] Koutourousiou M, Vaz Guimaraes Filho F, Fernandez-Miranda JC, et al. Endoscopic endonasal surgery for tumors of the cavernous sinus: a series of 234 patients. World Neurosurg 2017;103:713–732 [67] Lobo B, Zhang X, Barkhoudarian G, Griffiths CF, Kelly DF. Endonasal endoscopic management of parasellar and cavernous sinus meningiomas. Neurosurg Clin N Am 2015;26(3):389–401 [68] Patrona A, Patel KS, Bander ED, et al. Endoscopic endonasal surgery for nonadenomatous, nonmeningeal pathology involving the cavernous sinus. J Neurosurg 2017;126(3):880–888 [69] Emanuelli E, Bignami M, Digilio E, Fusetti S, Volo T, Castelnuovo P. Post-traumatic optic neuropathy: our surgical and medical protocol. Eur Arch Otorhinolaryngol 2015;272(11):3301–3309 [70] Berhouma M, Jacquesson T, Abouaf L, Vighetto A, Jouanneau E. Endoscopic endonasal optic nerve and orbital apex decompression for nontraumatic optic neuropathy: surgical nuances and review of the literature. Neurosurg Focus 2014;37(4):E19 [71] Koutourousiou M, Gardner PA, Tormenti MJ, et al. Endoscopic endonasal approach for resection of cranial base chordomas: outcomes and learning curve. Neurosurgery 2012;71(3):614–624, discussion 624–625 [72] Carlson ML, O’Connell BP, Breen JT, et al. Petroclival chondrosarcoma: a multicenter review of 55 cases and new staging system. Otol Neurotol 2016;37(7):940–950 [73] Mesquita Filho PM, Ditzel Filho LF, Prevedello DM, et al. Endoscopic endonasal surgical management of chondrosarcomas with cerebellopontine angle extension. Neurosurg Focus 2014;37(4):E13 [74] Georgalas C, Kania R, Guichard JP, Sauvaget E, Tran Ba Huy P, Herman P. Endoscopic transsphenoidal surgery for cholesterol granulomas involving the petrous apex. Clin Otolaryngol 2008;33(1):38–42 [75] Koutourousiou M, Fernandez-Miranda JC, Vaz-Guimaraes Filho F, et al. Outcomes of endonasal and lateral approaches to petroclival meningiomas. World Neurosurg 2017;99:500–517 [76] Shi J, Chen J, Chen T, et al. Neuroendoscopic resection of trigeminal schwannoma in the pterygopalatine/infratemporal fossa via the transnasal perpendicular plate palatine bone or transnasal maxillary sinus approach. World Neurosurg 2018;120:e1011–e1016 [77] Battaglia P, Turri-Zanoni M, Lepera D, et al. Endoscopic transnasal approaches to pterygopalatine fossa tumors. Head Neck 2016;38(Suppl 1):E214–E220 [78] Langdon C, Herman P, Verillaud B, et al. Expanded endoscopic endonasal surgery for advanced stage juvenile angiofibromas: a retrospective multi-center study. Rhinology 2016;54(3):239–246 [79] Schreiber A, Bertazzoni G, Ferrari M, et al. Management of persistent juvenile angiofibroma after endoscopic resection: analysis of a single institution series of 74 patients. Head Neck 2019;41(5):1297–1303 [80] Battaglia P, Turri-Zanoni M, Dallan I, et al. Endoscopic endonasal transpterygoid transmaxillary approach to the infratemporal and upper parapharyngeal tumors. Otolaryngol Head Neck Surg 2014;150(4):696–702 [81] Raza SM, Amine MA, Anand V, Schwartz TH. Endoscopic endonasal resection of trigeminal schwannomas. Neurosurg Clin N Am 2015;26(3):473–479 [82] Shin M, Shojima M, Kondo K, et al. Endoscopic endonasal craniofacial surgery for recurrent skull base meningiomas involving the pterygopalatine fossa, the infratemporal fossa, the orbit, and the paranasal sinus. World Neurosurg 2018;112:e302–e312 [83] Lee JT, Suh JD, Carrau RL, Chu MW, Chiu AG. Endoscopic Denker’s approach for resection of lesions involving the anteroinferior maxillary sinus and infratemporal fossa. Laryngoscope 2017;127(3):556–560 [84] Kassam AB, Prevedello DM, Carrau RL, et al. The front door to Meckel’s cave: an anteromedial corridor via expanded endoscopic endonasal approach—technical considerations and clinical series. Neurosurgery 2009;64(3, Suppl):ons71–ons82, discussion ons82–ons83 [85] McLaughlin N, Kelly DF, Prevedello DM, Shahlaie K, Carrau RL, Kassam AB. Endoscopic endonasal management of recurrent petrous apex cholesterol granuloma. J Neurol Surg B Skull Base 2012;73(3):190–196 [86] Taniguchi M, Akutsu N, Mizukawa K, Kohta M, Kimura H, Kohmura E. Endoscopic endonasal translacerum approach to the inferior petrous apex. J Neurosurg 2016;124(4):1032–1038 [87] Maurer AJ, Bonney PA, Iser CR, Ali R, Sanclement JA, Sughrue ME. Endoscopic endonasal infrapetrous transpterygoid approach to the petroclival junction for petrous apex chondrosarcoma: technical report. J Neurol Surg Rep 2015;76(1):e113–e116 [88] Morera VA, Fernandez-Miranda JC, Prevedello DM, et al. “Far-medial” expanded endonasal approach to the inferior third of the clivus: the transcondylar and transjugular tubercle approaches. Neurosurgery 2010;66(6, Suppl Operative):211–219, discussion 219–220 [89] Vaz-Guimaraes F, Nakassa ACI, Gardner PA, Wang EW, Snyderman CH, Fernandez-Miranda JC. Endoscopic endonasal approach to the ventral jugular foramen: anatomical basis, technical considerations, and clinical series. Oper Neurosurg (Hagerstown) 2017;13(4):482–491 [90] Castelnuovo P, Nicolai P, Turri-Zanoni M, et al. Endoscopic endonasal nasopharyngectomy in selected cancers. Otolaryngol Head Neck Surg 2013;149(3):424–430

Only gold members can continue reading. Log In or Register to continue

May 10, 2020 | Posted by in TEST | Comments Off on 1 Classification of Endoscopic Transnasal Approaches to the Skull Base and Adjacent Areas
Premium Wordpress Themes by UFO Themes